74 research outputs found

    Beginnings of a Good Apoptotic Meal: The Find-Me and Eat-Me Signaling Pathways

    Get PDF
    Prompt and efficient clearance of apoptotic cells is necessary to prevent secondary necrosis of dying cells and to avoid immune responses to autoantigens. Recent studies have shed light on how apoptotic cells through soluble “find-me” signals advertise their presence to phagocytes at the earliest stages of cell death. Phagocytes sense the find-me signal gradient, and in turn the presence of dying cells, and migrate to their vicinity. The apoptotic cells also expose specific “eat-me” signals on their surface that are recognized by phagocytes through specific engulfment receptors. This review covers the recent progress in the areas of find-me and eat-me signals and how these relate to prompt and immunologically silent clearance of apoptotic cells

    Defining solute carrier transporter signatures of murine immune cell subsets

    Get PDF
    Solute carrier (SLC) transporters are membrane-bound proteins that facilitate nutrient transport, and the movement across cellular membranes of various substrates ranging from ions to amino acids, metabolites and drugs. Recently, SLCs have gained increased attention due to their functional linkage to innate immunological processes such as the clearance of dead cells and anti-microbial defense. Further, the druggable nature of these transporters provides unique opportunities for improving outcomes in different immunological diseases. Although the SLCs represent the largest group of transporters and are often identified as significant hits in omics data sets, their role in immunology has been insufficiently explored. This is partly due to the absence of tools that allow identification of SLC expression in particular immune cell types and enable their comparison before embarking on functional studies. In this study, we used publicly available RNA-Seq data sets to analyze the transcriptome in adaptive and innate immune cells, focusing on differentially and highly expressed SLCs. This revealed several new insights: first, we identify differentially expressed SLC transcripts in phagocytes (macrophages, dendritic cells, and neutrophils) compared to adaptive immune cells; second, we identify new potential immune cell markers based on SLC expression; and third, we provide user-friendly online tools for researchers to explore SLC genes of interest (and the rest of the genes as well), in three-way comparative dot plots among immune cells. We expect this work to facilitate SLC research and comparative transcriptomic studies across different immune cells

    How Mouse Macrophages Sense What Is Going On

    Get PDF
    Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines

    Electrophysiology of Concatameric Pannexin 1 Channels Reveals the Stoichiometry of C-Terminal Autoinhibition

    Get PDF
    Codi d'Art Públic: 8008-1 (La República); Reportatge realitzat als dies 4 i 18-7-1990Pericas, Enric (arquitecte); Viaplana, Albert (arquitecte i estructura); Viladomat Massanas, Josep (escultura);Joan Pie (Medalló); Piñón, Helio (Estr

    Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway

    Get PDF
    Apoptotic cell clearance (efferocytosis) elicits an anti-inflammatory response by phagocytes, but the mechanisms that underlie this response are still being defined. Here, we uncover a chloride-sensing signalling pathway that controls both the phagocyte 'appetite' and its anti-inflammatory response. Efferocytosis transcriptionally altered the genes that encode the solute carrier (SLC) proteins SLC12A2 and SLC12A4. Interfering with SLC12A2 expression or function resulted in a significant increase in apoptotic corpse uptake per phagocyte, whereas the loss of SLC12A4 inhibited corpse uptake. In SLC12A2-deficient phagocytes, the canonical anti-inflammatory program was replaced by pro-inflammatory and oxidative-stress-associated gene programs. This 'switch' to pro-inflammatory sensing of apoptotic cells resulted from the disruption of the chloride-sensing pathway (and not due to corpse overload or poor degradation), including the chloride-sensing kinases WNK1, OSR1 and SPAK-which function upstream of SLC12A2-had a similar effect on efferocytosis. Collectively, the WNK1-OSR1-SPAK-SLC12A2/SLC12A4 chloride-sensing pathway and chloride flux in phagocytes are key modifiers of the manner in which phagocytes interpret the engulfed apoptotic corpse

    Pannexin 1 channels facilitate communication between T cells to restrict the severity of airway inflammation

    Get PDF
    Allergic airway inflammation is driven by type-2 CD4(+) T cell inflammatory responses. We uncover an immunoregulatory role for the nucleotide release channel, Panx1, in T cell crosstalk during airway disease. Inverse correlations between Panx1 and asthmatics and our mouse models revealed the necessity, specificity, and sufficiency of Panx1 in T cells to restrict inflammation. Global Panx1(-/-) mice experienced exacerbated airway inflammation, and T-cell-specific deletion phenocopied Panx1(-/-) mice. A transgenic designed to re-express Panx1 in T cells reversed disease severity in global Panx1(-/-) mice. Panx1 activation occurred in pro-inflammatory T effector (Teff) and inhibitory T regulatory (Treg) cells and mediated the extracellular-nucleotide-based Treg-Teff crosstalk required for suppression of Teff cell proliferation. Mechanistic studies identified a Salt-inducible kinase-dependent phosphorylation of Panx1 serine 205 important for channel activation. A genetically targeted mouse expressing non-phosphorylatable Panx1S205A phenocopied the exacerbated inflammation in Panx1(-/-) mice. These data identify Panx1-dependent Treg:Teff cell communication in restricting airway disease

    Context-dependent compensation among phosphatidylserine-recognition receptors

    Get PDF
    Phagocytes express multiple phosphatidylserine (PtdSer) receptors that recognize apoptotic cells. It is unknown whether these receptors are interchangeable or if they play unique roles during cell clearance. Loss of the PtdSer receptor Mertk is associated with apoptotic corpse accumulation in the testes and degeneration of photoreceptors in the eye. Both phenotypes are linked to impaired phagocytosis by specialized phagocytes: Sertoli cells and the retinal pigmented epithelium (RPE). Here, we overexpressed the PtdSer receptor BAI1 in mice lacking MerTK (Mertk(-/-) Bai1(Tg)) to evaluate PtdSer receptor compensation in vivo. While Bai1 overexpression rescues clearance of apoptotic germ cells in the testes of Mertk(-/-) mice it fails to enhance RPE phagocytosis or prevent photoreceptor degeneration. To determine why MerTK is critical to RPE function, we examined visual cycle intermediates and performed unbiased RNAseq analysis of RPE from Mertk(+/+) and Mertk(-/-) mice. Prior to the onset of photoreceptor degeneration, Mertk(-/-) mice had less accumulation of retinyl esters and dysregulation of a striking array of genes, including genes related to phagocytosis, metabolism, and retinal disease in humans. Collectively, these experiments establish that not all phagocytic receptors are functionally equal, and that compensation among specific engulfment receptors is context and tissue dependent

    Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo

    Get PDF
    Apoptosis of cells and their subsequent removal via efferocytosis occurs in nearly all tissues during development, homeostasis, and disease. However, it has been difficult to track cell death and subsequent corpse removal in vivo. Here, we developed a genetically encoded fluorescent reporter, CharON, that could track emerging apoptotic cells and their efferocytic clearance by phagocytes. Using Drosophila expressing CharON, we uncovered multiple qualitative and quantitative features of coordinated clearance of apoptotic corpses during embryonic development. To confront high rate of emerging apoptotic corpses, the macrophages displayed heterogeneity in engulfment, with some efferocytic macrophages carrying high corpse burden. However, overburdened macrophages were compromised in clearing wound debris, revealing an inherent vulnerability. These findings reveal known and unexpected features of apoptosis and macrophage efferocytosis in vivo

    Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization

    Get PDF
    Fertilization is essential for species survival. Although Izumo1 and Juno are critical for initial interaction between gametes, additional molecules necessary for sperm: egg fusion on both the sperm and the oocyte remain to be defined. Here, we show that phosphatidylserine (PtdSer) is exposed on the head region of viable and motile sperm, with PtdSer exposure progressively increasing during sperm transit through the epididymis. Functionally, masking phosphatidylserine on sperm via three different approaches inhibits fertilization. On the oocyte, phosphatidylserine recognition receptors BAl1, CD36, Tim-4, and Mer-TK contribute to fertilization. Further, oocytes lacking the cytoplasmic ELMO1, or functional disruption of RAC1 (both of which signal downstream of BAl1/BAl3), also affect sperm entry into oocytes. Intriguingly, mammalian sperm could fuse with skeletal myoblasts, requiring PtdSer on sperm and BAl1/3, ELMO2, RAC1 in myoblasts. Collectively, these data identify phosphatidylserine on viable sperm and PtdSer recognition receptors on oocytes as key players in sperm: egg fusion
    corecore