7 research outputs found

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals

    DLG4-related synaptopathy: a new rare brain disorder

    Get PDF
    PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.Genetics of disease, diagnosis and treatmen

    Chromosomal abnormalities in azoospermic and non-azoospermic infertile men: numbers needed to be screened to prevent adverse pregnancy outcomes

    Get PDF
    STUDY QUESTION: How many infertile men who wish to conceive need to be screened for chromosomal abnormalities to prevent one miscarriage or the birth of one child with congenital anomalies (CAs)? SUMMARY ANSWER: In azoospermic men, the prevalence of chromosomal abnormalities is 15.2% and the number needed to be screened (NNS; minimum-maximum estimate) for a miscarriage is 80-88 and for a child with CAs is 790-3951. The prevalence of chromosomal abnormalities in non-azoospermic men is 2.3% and the NNS are 315-347 and 2543-12 723, respectively. WHAT IS KNOWN ALREADY: Guidelines advise the screening of infertile men for chromosomal abnormalities to prevent miscarriages and children with congenital abnormalities, but no studies have been published on the effectiveness of this screening strategy. STUDY DESIGN, SIZE, DURATION: Retrospective cohort study of 1223 infertile men between 1994 and 2007. PARTICIPANTS, SETTING, METHODS: Men with azoospermia and men eligible for ICSI treatment visiting a university hospital fertility clinic in The Netherlands who underwent chromosomal analysis between 1994 and 2007 were identified retrospectively in a registry. Only cases of which at least one sperm analysis was available were included. Data were collected by chart review, with a follow-up of pregnancies and their outcomes until 2010. The chromosomal abnormalities were categorized according to their risk of unbalanced offspring, i.e. miscarriage and/or child with CAs. Multi-level analysis was used to estimate the impact of chromosomal abnormalities on the outcome of pregnancies in the different subgroups of our cohort. NNS for miscarriages and children with CAs were calculated based on data from our cohort and data published in the literature. MAIN RESULTS AND THE ROLE OF CHANCE: A chromosomal abnormality was found in 12 of 79 men with azoospermia (15.2%) and in 26 of 1144 non-azoospermic men (2.3%). The chromosomal abnormalities were categorized based on the literature, into abnormalities with and abnormalities without increased risk for miscarriage and/or child with CAs. In our study group, there was no statistically significant difference between the subgroups with and without increased risk respectively, regarding the frequency of children born with CAs (1/20; 5.0% versus 1/14; 7.1%), miscarriage (9/20; 45.0% versus 2/14; 14.3%) or unaffected liveborn children (9/20; 45.0% versus 9/14; 64.3%). The prevalence of chromosomal abnormalities with a theoretically increased risk of unbalanced progeny was 1.0% in non-azoospermic men and 3.8% in men with azoospermia. For the calculation of the NNS, the risk of an adverse pregnancy outcome in our cohort was compared with the incidence ranges of miscarriage and children with CAs in the general population. The number of azoospermic men that needs to be screened to prevent one miscarriage (80-88) or one child with CAs (790-3951) was considerably lower compared with the NNS in the non-azoospermic group (315-347 and 2543-12 723, respectively). LIMITATIONS, REASON FOR CAUTION: The prevalence of chromosomal abnormalities in infertile men is low, and although we included 1223 men, our conclusions are based on a small number (38) of abnormal karyotypes. As there are no large series on outcomes of pregnancies in infertile men with chromosomal abnormalities, our conclusions had to be partly based on assumptions derived from the literature. WIDER IMPLICATIONS OF THE FINDINGS: Based on the NNS calculated in our study, screening for chromosomal abnormalities is recommended in all azoospermic men. In non-azoospermic infertile men, screening might be limited to men with an additional risk factor (e.g. a history of recurrent miscarriage or a positive family history for recurrent miscarriage or children with CAs). The NNS can be used in future cost-effectiveness studies and the evaluation of current guidelines on karyotyping infertile men

    The prevalence of chromosomal abnormalities in subgroups of infertile men

    Get PDF
    BACKGROUND: The prevalence of chromosomal abnormalities is assumed to be higher in infertile men and inversely correlated with sperm concentration. Although guidelines advise karyotyping infertile men, karyotyping is costly, therefore it would be of benefit to identify men with the highest risk of chromosomal abnormalities, possibly by using parameters other than sperm concentration. The aim of this study was to evaluate several clinical parameters in azoospermic and non-azoospermic men, in order to assess the prevalence of chromosomal abnormalities in different subgroups of infertile men. METHODS: In a retrospective cohort of 1223 azoospermic men and men eligible for ICSI treatment, we studied sperm parameters, hormone levels and medical history for an association with chromosomal abnormalities. RESULTS: The prevalence of chromosomal abnormalities in the cohort was 3.1%. No association was found between chromosomal abnormalities and sperm volume, concentration, progressive motility or total motile sperm count. Azoospermia was significantly associated with the presence of a chromosomal abnormality [15.2%, odds ratio (OR) 7.70, P < 0.001]. High gonadotrophin levels were also associated with an increased prevalence of chromosomal abnormalities (OR 2.96, P = 0.013). Azoospermic men with a positive andrologic history had a lower prevalence of chromosomal abnormalities than azoospermic men with an uneventful history (OR 0.28, P = 0.047). In non-azoospermic men, we found that none of the studied variables were associated with the prevalence of chromosomal abnormalities. CONCLUSIONS: We show that the highest prevalence of chromosomal abnormalities is found in hypergonadotrophic azoospermic men with an uneventful andrologic history

    Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity.

    No full text
    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switch-insensitive 3 family member A (SIN3A; chromosome 15q24.2) in individuals who, in addition to mild intellectual disability and ASD, share striking features, including facial dysmorphisms, microcephaly and short stature. This phenotype is highly related to that of individuals with atypical 15q24 microdeletions, linking SIN3A to this microdeletion syndrome. Brain magnetic resonance imaging showed subtle abnormalities, including corpus callosum hypoplasia and ventriculomegaly. Intriguingly, in vivo functional knockdown of Sin3a led to reduced cortical neurogenesis, altered neuronal identity and aberrant corticocortical projections in the developing mouse brain. Together, our data establish that haploinsufficiency of SIN3A is associated with mild syndromic intellectual disability and that SIN3A can be considered to be a key transcriptional regulator of cortical brain development

    De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations

    No full text
    Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affecte
    corecore