218 research outputs found

    Relationship between individual chamber and whole shell Mg/Ca ratios in Trilobatus sacculifer and implications for individual foraminifera palaeoceanographic reconstructions

    Get PDF
    Precisely targeted measurements of trace elements using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reveal inter-chamber heterogeneities in specimens of the planktic foraminifer Trilobatus (Globigerinoides) sacculifer. We find that Mg/Ca ratios in the final growth chamber are generally lower compared to previous growth chambers, but final chamber Mg/Ca is elevated in one of thirteen sample intervals. Differences in distributions of Mg/Ca values from separate growth chambers are observed, occurring most often at lower Mg/Ca values, suggesting that single-chamber measurements may not be reflective of the specimen’s integrated Mg/Ca. We compared LA-ICPMS Mg/Ca values to paired, same-individual Mg/Ca measured via inductively coupled plasma optical emission spectrometry (ICP-OES) to assess their correspondence. Paired LA-ICPMS and ICP-OES Mg/Ca show a maximum correlation coefficient of R = 0.92 (p \u3c 0.05) achieved by applying a weighted average of the last and penultimate growth chambers. Population distributions of paired Mg/Ca values are identical under this weighting. These findings demonstrate that multi-chamber LA-ICPMS measurements can approximate entire specimen Mg/Ca, and is thus representative of the integrated conditions experienced during the specimen’s lifespan. This correspondence between LA-ICPMS and ICP-OES data links these methods and demonstrates that both generate Mg/Ca values suitable for individual foraminifera palaeoceanographic reconstructions

    IODP Expedition 323—Pliocene and Pleistocene Paleoceanographic Changes in the Bering Sea

    Get PDF
    High-resolution paleoceanography of the Plio-Pleistocene is important in understanding climate forcing mechanisms and the associated environmental changes. This is particularly true in high-latitude marginal seas such as the Bering Sea, which has been very sensitive to changes in global climate during interglacial and glacial or Milankovitch time scales. This is due to significant changes in water circulation, land-ocean interaction, and sea-ice formation. With theaim to reveal the climate and oceanographic history of the Bering Sea over the past 5 Ma, Integrated Ocean Drilling Program (IODP) Expedition 323 cored a total of 5741 meters of sediment (97.4% recovery) at seven sites covering three different areas: Umnak Plateau, Bowers Ridge, and the Bering slope region. Four deep holes range from 600 m to 745 m spanning in age from 1.9 Ma to 5 Ma. The water depths (819 m to 3173 m) allow characterization of past verticalwater mass distribution such as the oxygen minimum zone (OMZ). The results highlight three key points. (1) The first is an understanding of long-term evolution of surface-water mass distribution during the past 5 Ma including past sea-ice distribution and warm and less eutrophic subarctic Pacific water mass entry into the Bering Sea. (2) We characterized relatively stagnant intermediate water mass distribution imprinted as laminated sediment intervals that have beenubiquitously encountered. Today, the OMZ impinges upon the sediments at ~700–1600 m water depths. In the past, the OMZ appears to have occurred mainly during interglacial periods. Changes in low oxygen-tolerant benthic foraminiferal faunas clearly concur with this observation. (3) We also characterized significant changes between glacial episode of terrigenous sedimentary supply and interglacialepisode of diatom flux

    IODP New Ventures in Exploring Scientific Targets (INVEST): Defining the New Goals of an International Drilling Program

    Get PDF
    No abstract available. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.9.12.2010" target="_blank">10.2204/iodp.sd.9.12.2010</a

    The Guaymas Basin Subseafloor Sedimentary Archaeome Reflects Complex Environmental Histories

    Get PDF
    Highlights • Archaeal community composition reflects locally specific environmental challenges • Biogeochemical properties do not predict archaeal community structure • Environmental history controls subseafloor archaeal populations Summary We explore archaeal distributions in sedimentary subseafloor habitats of Guaymas Basin and the adjacent Sonora Margin, located in the Gulf of California, México. Sampling locations include (1) control sediments without hydrothermal or seep influence, (2) Sonora Margin sediments underlying oxygen minimum zone water, (3) compacted, highly reduced sediments from a pressure ridge with numerous seeps at the base of the Sonora Margin, and (4) sediments impacted by hydrothermal circulation at the off-axis Ringvent site. Generally, archaeal communities largely comprise Bathyarchaeal lineages, members of the Hadesarchaea, MBG-D, TMEG, and ANME-1 groups. Variations in archaeal community composition reflect locally specific environmental challenges. Background sediments are divided into surface and subsurface niches. Overall, the environmental setting and history of a particular site, not isolated biogeochemical properties out of context, control the subseafloor archaeal communities in Guaymas Basin and Sonora Margin sediments

    Coupled climate and subarctic Pacific nutrient upwelling over the last 850,000 years

    Get PDF
    High latitude deep water upwelling has the potential to control global climate over glacial timescales through the biological pump and ocean-atmosphere CO2 exchange. However, there is currently a lack of continuous long nutrient upwelling records with which to assess this mechanism. Here we present geochemical proxy records for nutrient upwelling and glacial North Pacific Intermediate Water (GNPIW) formation in the Bering Sea over the past 850 kyr, which demonstrates that glacial periods were characterised by reduced nutrient upwelling, when global atmospheric CO2 and temperature were also lowered. We suggest that glacial expansion of sea ice in the Bering Sea, and the simultaneous expansion of low nutrient GNPIW, inhibited vertical mixing and nutrient supply across the subarctic Pacific Ocean. Our findings lend support to the suggestion that high latitude sea ice and the resultant intermediate water formation, modulated deep water upwelling and ocean-atmosphere CO2 exchange on glacial-interglacial timescales

    Closure of the Bering Strait caused Mid-Pleistocene Transition cooling

    Get PDF
    The Mid-Pleistocene Transition (MPT) is characterised by cooling and lengthening glacial cycles from 600–1200 ka, thought to be driven by reductions in glacial CO2 in particular from ~900 ka onwards. Reduced high latitude upwelling, a process that retains CO2 within the deep ocean over glacials, could have aided drawdown but has so far not been constrained in either hemisphere over the MPT. Here, we find that reduced nutrient upwelling in the Bering Sea, and North Pacific Intermediate Water expansion, coincided with the MPT and became more persistent at ~900 ka. We propose reduced upwelling was controlled by expanding sea ice and North Pacific Intermediate Water formation, which may have been enhanced by closure of the Bering Strait. The regional extent of North Pacific Intermediate Water across the subarctic northwest Pacific would have contributed to lower atmospheric CO2 and global cooling during the MPT

    Bering Sea nitrate utilization and stratification since 1.2 Ma analyzed at IODP Site 323-U1342 Holes A, C, and D

    No full text
    The relationship between climate, biological productivity, and nutrient flux is of considerable interest in the subarctic Pacific, which represents an important high-nitrate, low-chlorophyll region. While previous studies suggest that changes in iron supply and/or physical ocean stratification could hypothetically explain orbital-scale fluctuations in subarctic Pacific nutrient utilization and productivity, previous records of nutrient utilization are too short to evaluate these relationships over many glacial-interglacial cycles. We present new, high-resolution records of sedimentary d15N, which offer the first opportunity to evaluate systematic, orbital-scale variations in subarctic Pacific nitrate utilization from 1.2 Ma. Nitrate utilization was enhanced during all glacials, varied with orbital-scale periodicity since the mid-Pleistocene transition, was strongly correlated with enhanced aeolian dust and low atmospheric CO2, but was not correlated with productivity. These results suggest that glacial stratification, rather than iron fertilization, systematically exerted an important regional control on nutrient utilization and air-sea carbon flux

    Stable oxygen and carbon isotope record of benthic foraminifera in Pliocene sediments of the Californian margin

    No full text
    New benthic foraminiferal stable isotopic records of northeast Pacific intermediate water (ODP Site 1014, 1177 m) and mid-depth water (ODP Site 1018, 2476 m) were compared to isotopic records of deep water in the tropical Pacific (ODP Site 849, 3851 m) for the reconstruction of vertical profiles of nutrient and physical properties from the Early Pliocene to the Early Pleistocene (approx. 5-1.4 Ma). Our data indicate that, for the entire interval, there was enhanced north Pacific intermediate water ventilation relative to today, and a similar to modern circulation pattern with northward flowing Pacific Bottom Water (PBW) beneath its southward flowing return flow. However, the core of maximally aged return flow resided as deep as ~2500 m (as compared to ~1500 m today), probably due to the strengthened intermediate water flow. Less apparent aging of deep water along its path before 2.7 Ma indicates that thermohaline overturning may have been more rapid in the warm period of the Early Pliocene. In addition, prior to 2.7 Ma, foraminiferal oxygen isotopic values at mid-depth sites are higher than at deep sites (a reversed vertical gradient relative to today) in both the Atlantic and Pacific Oceans. We suggest that NADW was warmer and more saline than today and that it influenced mid-depth waters throughout the Atlantic and Pacific Oceans. Enhanced Pliocene formation of warmer/saltier intermediate water in the north Pacific, and deep water in the north Atlantic, may have been a result of higher than modern high/mid-latitude sea surface temperatures, evaporation, and salinity
    • …
    corecore