12 research outputs found

    Renal arteriovenous malformation presenting with massive hematuria

    Get PDF
    AbstractRenal arteriovenous malformations are abnormal communications between the intrarenal arterial and venous systems. They are a rare cause of hematuria. Color Doppler ultrasonography, multislice CT angiography, and DSA are important tools for making the diagnosis. We describe the case of a 62-year-old man with renal arteriovenous malformation who presented with gross hematuria

    Preparation and evaluation of cilnidipine microemulsion

    No full text
    Cilnidipine, a calcium channel blocker having neuroprotective action and BCS Class II drug, hence formulating in Microemulsion will increase solubility, absorption and bioavailability. The formulation was prepared using titration method by tocotrienol, tween 20 and transcutol HP as oil, surfactant and co-surfactant and characterized for dilutability, dye solubility, assay (98.39±0.06), pH (6.6±1.5), Viscosity (98±1.0 cps) and Conductivity (0.2±0.09 μS/cm). The formulation was optimized on basis of percentage transmittance (99.269±0.23 at 700 nm), Globule size (13.31±4.3 nm) and zeta potential (-11.4±2.3 mV). Cilnidipine microemulsion was found to be stable for 3 months

    Renal arteriovenous malformation presenting with massive hematuria

    No full text
    Renal arteriovenous malformations are abnormal communications between the intrarenal arterial and venous systems. They are a rare cause of hematuria. Color Doppler ultrasonography, multislice CT angiography, and DSA are important tools for making the diagnosis. We describe the case of a 62-year-old man with renal arteriovenous malformation who presented with gross hematuria

    Hexametaphosphate cross-linked chitosan beads for the eco-efficient removal of organic dyes: tackling water quality

    No full text
    Summarization: There is an increasing trend of developing various low-cost grafted natural amino polysaccharides for the biosorptive removal of noxious dye effluents like Malachite green (MG) and anionic Reactive Red–195 (RR-195) dyes from aqueous solution. Chemically cross-linked chitosan microsphere (CTS-HMP), a promising non-toxic biosorbent possessing high charge density and thermal stability was prepared by using hexametaphosphate as ionic cross-linker. Batch biosorption experiments were carried out under different temperatures (298, 308 and 318 K), pH (2.0–10.0), initial concentrations (25–250 mg L−1), adsorbent dosage (0.01–0.1 g) and contact times (0–180 min) to understand the optimum experimental conditions and simultaneously evaluate the adsorption isotherms and kinetics of CTS-HMP. Biosorption equilibrium was established in 120 and 60 min for MG and RR-195 removal process. The pseudo-equilibrium process was best described by the pseudo-second-order kinetic (R2 ≥ 0.98), Freundlich and Temkin isotherm model (R2 ≥ 0.90). The removal rate of MG and RR-195 gradually increased (69.40 and 148 mg g−1) at 250 mg L−1 of initial concentration till 100 and 50 min of contact period in a single contaminant system, though the removal efficiency of acid dye was ~2 times higher compared to basic dye under optimum conditions (p < 0.05; t-test). Thermodynamic parameters indicated exothermic (MG) and endothermic (RR-195) nature of spontaneous dye removal. The activation energy of sorption (Ea) was <50 kJ mol−1 which highlighted the importance of physical adsorption process. Therefore, the obtained results clearly validate the sustainable utilization of CTS-HMP as a promising functionalized chitosan microparticles/agent for removing dye effluents from the contaminated aqueous phase.Presented on: Journal of Environmental Managemen

    Diaryl dihydropyrazole-3-carboxamides with significant in vivo antiobesity activity related to CB1 receptor antagonism: Synthesis, biological evaluation, and molecular modeling in the homology model

    No full text
    A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compoundsthe bisulfate salt of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (−)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 30showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB1 receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant) 1 and 4S-(−)-3-(4-chlorophenyl)-N-methyl-N‘-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2

    Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis

    No full text
    Novel chitosan-coated nanoparticles with a high payload of amphotericin B (AmB) and doxorubicin (Dox) were formulated employing a nanoprecipitation technique and evaluated for antileishmanial activity against Leishmania donovani. FTIR, DSC and TG-DTA analysis ensured the physicochemical compatibility of drugs and polymers. The chitosan-coated optimized nanoparticle formulation resulted in a mean particle size; 374.4 ± 4.8 nm, PDI; 0.227 ± 0.035 and zeta potential; (+) 32.9 ± 1.10 mV. The entrapment efficiency was determined to be 70.2 ± 4.76 and 93.86 ± 2.61% for AmB and Dox respectively. An in vitro drug release study demonstrated the release of 27.29 and 36.93% AmB and Dox, respectively after 24 h from chitosan-coated PLGA nanoparticles which is slower than the release obtained from uncoated PLGA nanoparticles of AmB and Dox (32.82 and 57.93% AmB and Dox respectively after 24 h). Stability studies confirmed no remarkable alterations in the physicochemical properties of nanoparticles. Cs-PLGA-ABDx was less hemotoxic (22.87 ± 0.487%) than PLGA-ABDx (36.71 ± 2.08%) and the ABDx suspension (97.04 ± 5.01%) at 42.78 μg mL<sup>−1</sup> AmB and 80 μg mL<sup>−1</sup> Dox. Cell uptake investigation showed the mean florescence intensity of chitosan-coated PLGA-FITC was 2.02 fold higher than uncoated PLGA-FITC nanoparticles. The cytotoxicity in J774A.1 cells revealed Cs-PLGA-ABDx was less cytotoxic compared to the ABDx suspension and PLGA-ABDx, whereas the IC<sub>50</sub> of Cs-PLGA-ABDx against infected macrophages was significantly (p &#60; 0.05) lower than PLGA-ABDx indicating the effectiveness of Cs-PLGA-ABDx. No significant increase in the biomedical markers AST, BUN and PC was observed in Cs-PLGA-ABDx treated groups at 1 and 3 mg kg<sup>−1</sup> dose. These experimental findings put forward Cs-PLGA-ABDx to be a suitable alternative in the management of visceral leishmaniasis
    corecore