39 research outputs found

    Humic Substances Enhance Chlorothalonil Phototransformation via Photoreduction and Energy Transfer

    Get PDF
    ABSTRACT: The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet–visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300–450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances

    Short Term Synaptic Depression Imposes a Frequency Dependent Filter on Synaptic Information Transfer

    Get PDF
    Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse

    The Diagnostic Potential of Fe Lines Applied to Protostellar Jets

    Get PDF
    We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 \uc5, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-H\u3b1 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-H\u3b1 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 \uc5. The [Fe II] line analysis indicates that the jet driven by ESO-H\u3b1 574 is, on average, colder (T e 3c 9000 K), less dense (n e 3c 2 7 104 cm-3), and more ionized (x e 3c 0.7) than the Par-Lup 3-4 jet (T e 3c 13,000 K, n e 3c 6 7 104 cm-3, x e < 0.4), even if the existence of a higher density component (n e 3c 2 7 105 cm-3) is probed by the [Fe III] and [Fe II] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-H\u3b1 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-H\u3b1 574 (50%-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-H\u3b1 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many line

    Two Algorithms for Motion Estimation from Alternate Exposure Images

    No full text
    Abstract. Most algorithms for dense 2D motion estimation assume pairs of images that are acquired with an idealized, infinitively short exposure time. In this work we compare two approaches that use an additional, motion-blurred image of a scene to estimate highly accurate, dense correspondence fields. We consider video sequences that are acquired with alternating exposure times so that a short-exposure image is followed by a long-exposure image that exhibits motion-blur. For both motion estimation algorithms we employ an image formation model that relates the motion blurred image to two enframing short-exposure images. With this model we can decipher the motion information encoded in the long-exposure image, but also estimate occlusion timings which are a prerequisite for artifact-free frame interpolation. The first approach solves for the motion in a pointwise least squares formulation while the second formulates a global, total variation regularized problem. Both approaches are evaluated in detail and compared to each other and state-of-the-art motion estimation algorithms
    corecore