847 research outputs found

    Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector

    Get PDF
    For the HERA upgrade, the ZEUS experiment has designed and installed a high precision Micro Vertex Detector (MVD) using single sided micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 microns, with five intermediate strips (20 micron strip pitch). An extensive test program has been carried out at the DESY-II testbeam facility. In this paper we describe the setup developed to test the ZEUS MVD sensors and the results obtained on both irradiated and non-irradiated single sided micro-strip detectors with rectangular and trapezoidal geometries. The performances of the sensors coupled to the readout electronics (HELIX chip, version 2.2) have been studied in detail, achieving a good description by a Monte Carlo simulation. Measurements of the position resolution as a function of the angle of incidence are presented, focusing in particular on the comparison between standard and newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM

    Guidelines for incorporating scientific knowledge and practice on rare diseases into higher education: neuronal ceroid lipofuscinoses as a model disorder model disorder.

    Get PDF
    This article addresses the educational issues associated with rare diseases (RD) and in particular the Neuronal Ceroid Lipofuscinoses (NCLs, or CLN diseases) in the curricula of Health Sciences and Professional's Training Programs. Our aim is to develop guidelines for improving scientific knowledge and practice in higher education and continuous learning programs. Rare diseases (RD) are collectively common in the general populationwith 1 in 17 people affected by a RDin their lifetime. Inherited defects in genes involved in metabolism are the commonest group of RD with over 8000 known inborn errors of metabolism. The majority of these diseases are neurodegenerative including the NCLs. Any professional training program on NCL must take into account the medical, social and economic burdens related to RDs. To address these challenges and find solutions to themit is necessary that individuals in the government and administrative authorities, academia, teaching hospitals and medical schools, the pharmaceutical industry, investment community and patient advocacy groups all work together to achieve these goals. The logistical issues of including RD lectures in university curricula and in continuing medical education should reflect its complex nature. To evaluate the state of education in the RD field, a summary should be periodically up dated in order to assess the progress achieved in each country that signed up to the international conventions addressing RD issues in society. It is anticipated that auditing current practice will lead to higher standards and provide a framework for those educators involved in establishing RD teaching programs world-wide.publishedVersio

    First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers

    Get PDF
    We report the first direct measurement of the overall characteristics of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have been read out and searched for signatures of radio emission by high-energy air showers in the GHz frequency range. Microwave signals have been detected for more than 30 showers with energies above 3*10^16 eV. The observations presented in this Letter are consistent with a mainly forward-directed and polarised emission process in the GHz frequency range. The measurements show that microwave radiation offers a new means of studying air showers at energies above 10^17 eV.Comment: Accepted for publication in PR

    The wavefront of the radio signal emitted by cosmic ray air showers

    Get PDF
    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 101710^{17}\,eV and zenith angles smaller than 4545^\circ, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances 50\gtrsim 50\,m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140140\,g/cm2^2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, XmaxX_\mathrm{max}, better than 3030\,g/cm2^2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.Comment: accepted by JCA

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)
    corecore