192 research outputs found

    The association of spatial T wave axis deviation with incident coronary events. The ARIC cohort

    Get PDF
    BACKGROUND: Although current evidence suggests that the spatial T wave axis captures important information about ventricular repolarization abnormalities, there are only a few and discordant epidemiologic studies addressing the ability of the spatial T wave axis to predict coronary heart disease (CHD) occurrence. METHODS: This prospective study analyzed data from 12,256 middle-aged African American and white men and women, from the Atherosclerosis Risk in Communities Study (ARIC). Following a standardized protocol, resting standard 12-lead, 10-second electrocardiograms were digitized and analyzed with the Marquette GE program. The median follow-up time was 12.1 years; incident coronary heart disease comprised fatal and non-fatal CHD events. RESULTS: The incidence rate of CHD was 4.26, 4.18, 4.28 and 5.62 per 1000 person-years respectively, across the spatial T wave axis quartiles. Among women for every 10 degrees increase in the spatial T wave axis deviation, there was an estimated increase in the risk of CHD of 1.16 (95% CI 1.04–1.28). After adjustment for age, height, weight, smoking, hypertension, diabetes, QRS axis and minor T wave abnormalities, this hazard rate ratio for women fell to 1.03 (0.92–1.14). The corresponding crude and adjusted hazard ratios for men were 1.05 (95% CI 0.96–1.15) and 0.95 (0.86–1.04) respectively. CONCLUSIONS: In conclusion, this prospective, population-based, bi-ethnic study of men and women free of coronary heart disease at baseline shows that spatial T wave axis deviation is not associated with incident coronary events during long-term follow up. It is doubtful that spatial T wave axis deviation would add benefit in the prediction of CHD events above and beyond the current traditional risk factors

    Electrocardiographic Left Ventricular Hypertrophy and Outcome in Hemodialysis Patients

    Get PDF
    BACKGROUND AND AIMS: Electrocardiography (ECG) is the most widely used initial screening test for the assessment of left ventricular hypertrophy (LVH), an independent predictor of cardiovascular mortality in patients with end-stage renal disease (ESRD). However, traditional ECG criteria based only on voltage to detect LVH have limited clinical utility for the detection of LVH because of their poor sensitivity. METHODS: This prospective observational study was undertaken to compare the prognostic significance of commonly used ECG criteria for LVH, namely Sokolow-Lyon voltage (SV) or voltage-duration product (SP) and Cornell voltage (CV) or voltage-duration product (CP) criteria, and to investigate the association between echocardiographic LV mass index (LVMI) and ECG-LVH criteria in ESRD patients, who consecutively started maintenance hemodialysis (HD) between January 2006 and December 2008. RESULTS: A total of 317 patients, who underwent both ECG and echocardiography, were included. Compared to SV and CV criteria, SP and CP criteria, respectively, correlated more closely with LVMI. In addition, CP criteria provided the highest positive predictive value for echocardiographic LVH. The 5-year cardiovascular survival rates were significantly lower in patients with ECG-LVH by each criterion. In multivariate analyses, echocardiographic LVH [adjusted hazard ratio (HR): 11.71; 95% confidence interval (CI): 1.57-87.18; P = 0.016] and ECG-LVH by SP (HR: 3.43; 95% CI: 1.32-8.92; P = 0.011) and CP (HR: 3.07; 95% CI: 1.16-8.11; P = 0.024) criteria, but not SV and CV criteria, were significantly associated with cardiovascular mortality. CONCLUSIONS: The product of QRS voltage and duration is helpful in identifying the presence of LVH and predicting cardiovascular mortality in incident HD patients

    Coffee, Alcohol, Smoking, Physical Activity and QT Interval Duration: Results from the Third National Health and Nutrition Examination Survey

    Get PDF
    Abnormalities in the electrocardiographic QT interval duration have been associated with an increased risk of ventricular arrhythmias and sudden cardiac death. However, there is substantial uncertainty about the effect of modifiable factors such as coffee intake, cigarette smoking, alcohol consumption, and physical activity on QT interval duration.We studied 7795 men and women from the Third National Health and Nutrition Survey (NHANES III, 1988-1994). Baseline QT interval was measured from the standard 12-lead electrocardiogram. Coffee and tea intake, alcohol consumption, leisure-time physical activities over the past month, and lifetime smoking habits were determined using validated questionnaires during the home interview.In the fully adjusted model, the average differences in QT interval comparing participants drinking ≥6 cups/day to those who did not drink any were -1.2 ms (95% CI -4.4 to 2.0) for coffee, and -2.0 ms (-11.2 to 7.3) for tea, respectively. The average differences in QT interval duration comparing current to never smokers was 1.2 ms (-0.6 to 2.9) while the average difference in QT interval duration comparing participants drinking ≥7 drinks/week to non-drinkers was 1.8 ms (-0.5 to 4.0). The age, race/ethnicity, and RR-interval adjusted differences in average QT interval duration comparing men with binge drinking episodes to non-drinkers or drinkers without binge drinking were 2.8 ms (0.4 to 5.3) and 4.0 ms (1.6 to 6.4), respectively. The corresponding differences in women were 1.1 (-2.9 to 5.2) and 1.7 ms (-2.3 to 5.7). Finally, the average differences in QT interval comparing the highest vs. the lowest categories of total physical activity was -0.8 ms (-3.0 to 1.4).Binge drinking was associated with longer QT interval in men but not in women. QT interval duration was not associated with other modifiable factors including coffee and tea intake, smoking, and physical activity

    Multiple Independent Genetic Factors at NOS1AP Modulate the QT Interval in a Multi-Ethnic Population

    Get PDF
    Extremes of electrocardiographic QT interval are associated with increased risk for sudden cardiac death (SCD); thus, identification and characterization of genetic variants that modulate QT interval may elucidate the underlying etiology of SCD. Previous studies have revealed an association between a common genetic variant in NOS1AP and QT interval in populations of European ancestry, but this finding has not been extended to other ethnic populations. We sought to characterize the effects of NOS1AP genetic variants on QT interval in the multi-ethnic population-based Dallas Heart Study (DHS, n = 3,072). The SNP most strongly associated with QT interval in previous samples of European ancestry, rs16847548, was the most strongly associated in White (P = 0.005) and Black (P = 3.6×10−5) participants, with the same direction of effect in Hispanics (P = 0.17), and further showed a significant SNP × sex-interaction (P = 0.03). A second SNP, rs16856785, uncorrelated with rs16847548, was also associated with QT interval in Blacks (P = 0.01), with qualitatively similar results in Whites and Hispanics. In a previously genotyped cohort of 14,107 White individuals drawn from the combined Atherosclerotic Risk in Communities (ARIC) and Cardiovascular Health Study (CHS) cohorts, we validated both the second locus at rs16856785 (P = 7.63×10−8), as well as the sex-interaction with rs16847548 (P = 8.68×10−6). These data extend the association of genetic variants in NOS1AP with QT interval to a Black population, with similar trends, though not statistically significant at P<0.05, in Hispanics. In addition, we identify a strong sex-interaction and the presence of a second independent site within NOS1AP associated with the QT interval. These results highlight the consistent and complex role of NOS1AP genetic variants in modulating QT interval

    Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Get PDF
    BACKGROUND: In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM) acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. METHODS: In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC) based filter and Sequential Forward Selection (SFS) based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI). RESULTS: It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a) features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b) lead subsets chosen were not necessarily unique. CONCLUSION: It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however that in this study recording sites have been suggested on their ability to detect disease and such sites may not be optimal for estimating body surface potential distributions

    Acute Adverse Effects of Fine Particulate Air Pollution on Ventricular Repolarization

    Get PDF
    Background The mechanisms for the relationship between particulate pollution and cardiac disease are not fully understood. Objective We examined the effects and time course of exposure to fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) on ventricular repolarization of 106 nonsmoking adults who were living in communities in central Pennsylvania. Methods The 24-hr beat-to-beat electrocardiogram (ECG) data were obtained using a high-resolution 12-lead Holter system. After visually identifying and removing artifacts and arrhythmic beats, we summarized normal beat-to-beat QTs from each 30-min segment as heart rate (HR)-corrected QT measures: QT prolongation index (QTI), Bazett’s HR-corrected QT (QTcB), and Fridericia’s HR-corrected QT (QTcF). A personal PM2.5 monitor was used to measure individual-level real-time PM2.5 exposures for 24 hr. We averaged these data and used 30-min time-specific average PM2.5 exposures. Results The mean age of the participants was 56 ± 8 years, with 41% male and 74% white. The means ± SDs for QTI, QTcB, and QTcF were 111 ± 6.6, 438 ± 23 msec, and 422 ± 22 msec, respectively; and for PM2.5, the mean ± SD was 14 ± 22 μg/m3. We used distributed lag models under a framework of linear mixed-effects models to assess the autocorrelation-corrected regression coefficients (β) between 30-min PM2.5 and the HR-corrected QT measures. Most of the adverse ventricular repolarization effects from PM2.5 exposure occurred within 3–4 hr. The multivariable adjusted β (SE, p-value) due to a 10-μg/m3 increase in lag 7 PM2.5 on QTI, QTcB, and QTcF were 0.08 (0.04, p < 0.05), 0.22 (0.08, p < 0.01), and 0.09 (0.05, p < 0.05), respectively. Conclusions Our results suggest a significant adverse effect of PM2.5 on ventricular repolarization. The time course of the effect is within 3–4 hr of elevated PM2.5

    Determinants of cardiac troponin T elevation in COPD exacerbation – a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac Troponin T (cTnT) elevation during exacerbations of chronic obstructive pulmonary disease (COPD) is associated with increased mortality the first year after hospital discharge. The factors associated with cTnT elevation in COPD are not known.</p> <p>Methods</p> <p>From our hospital's database, all patients admitted with COPD exacerbation in 2000–03 were identified. 441 had measurement of cTnT performed. Levels of cTnT ≥ 0.04 μg/l were considered elevated. Clinical and historical data were retrieved from patient records, hospital and laboratory databases. Odds ratios for cTnT elevation were calculated using logistic regression.</p> <p>Results</p> <p>120 patients (27%) had elevated cTnT levels. The covariates independently associated with elevated cTnT were increasing neutrophil count, creatinine concentration, heart rate and Cardiac Infarction Injury Score (CIIS), and decreasing hemoglobin concentration. The adjusted odds ratios (95% confidence intervals in parentheses) for cTnT elevation were 1.52 (1.20–1.94) for a 5 × 10<sup>6</sup>/ml increase in neutrophils, 1.21 (1.12–1.32) for a 10 μmol/l increase in creatinine, 0.80 (0.69–0.92) for a 1 mg/dl increase in hemoglobin, 1.24 (1.09–1.42) for a 10 beats/minute increase in heart rate and 1.44 (1.15–1.82) for a 10 point increase in CIIS.</p> <p>Conclusion</p> <p>Multiple factors are associated with cTnT elevation, probably reflecting the wide panorama of comorbid conditions typically seen in COPD. The positive association between neutrophils and cTnT elevation is compatible with the concept that an exaggerated inflammatory response in COPD exacerbation may predispose for myocardial injury.</p

    Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resting conventional 12-lead ECG has low sensitivity for detection of coronary artery disease (CAD) and left ventricular hypertrophy (LVH) and low positive predictive value (PPV) for prediction of left ventricular systolic dysfunction (LVSD). We hypothesized that a ~5-min resting 12-lead <it>advanced </it>ECG test ("A-ECG") that combined results from both the advanced and conventional ECG could more accurately screen for these conditions than strictly conventional ECG.</p> <p>Methods</p> <p>Results from nearly every conventional and advanced resting ECG parameter known from the literature to have diagnostic or predictive value were first retrospectively evaluated in 418 healthy controls and 290 patients with imaging-proven CAD, LVH and/or LVSD. Each ECG parameter was examined for potential inclusion within multi-parameter A-ECG scores derived from multivariate regression models that were designed to optimally screen for disease in general or LVSD in particular. The performance of the best retrospectively-validated A-ECG scores was then compared against that of optimized pooled criteria from the strictly conventional ECG in a test set of 315 additional individuals.</p> <p>Results</p> <p>Compared to optimized pooled criteria from the strictly conventional ECG, a 7-parameter A-ECG score validated in the training set increased the sensitivity of resting ECG for identifying disease in the test set from 78% (72-84%) to 92% (88-96%) (P < 0.0001) while also increasing specificity from 85% (77-91%) to 94% (88-98%) (P < 0.05). In diseased patients, another 5-parameter A-ECG score increased the PPV of ECG for LVSD from 53% (41-65%) to 92% (78-98%) (P < 0.0001) without compromising related negative predictive value.</p> <p>Conclusion</p> <p>Resting 12-lead A-ECG scoring is more accurate than strictly conventional ECG in screening for CAD, LVH and LVSD.</p
    • …
    corecore