9 research outputs found

    Enzyme‐induced ferrification of hydrogels for toughening of functional inorganic compounds

    Get PDF
    Enzyme-induced mineralization (EIM) has been shown to greatly enhance the mechanical properties of hydrogels by precipitation of calcium salts. Another feature of such hydrogels is their high toughness even when containing finely nanostructured mineral content of ≈75 wt%. This might be useful for bendable materials with high content of functional inorganic nanostructures. The present study demonstrates that EIM can form homogeneous nanostructures of water-insoluble iron salts within hydrogels. Crystalline iron(II) carbonate precipitates urease-induced within polyacrylate-based hydrogels and forms platelet structures that have the potential of forming self-organized nacre-like architectures. The platelet structure can be influenced by chemical composition of the hydrogel. Further, amorphous iron(II) phosphate precipitates within hydrogels with alkaline phosphatase, forming a nanostructured porous inorganic phase, homogeneously distributed within the double network hydrogel. The high amount of iron phosphate (more than 80 wt%) affords a stiffness of ≈100 MPa. The composite is still bendable with considerable toughness of 400 J m−2 and strength of 1 MPa. The high water content (>50%) may allow fast diffusion processes within the material. This makes the iron phosphate-based composite an interesting candidate for flexible electrodes and demonstrates that EIM can be used to deliberately soften ceramic materials, rendering them bendable

    Prevalence and incidence of iron deficiency in European community-dwelling older adults : An observational analysis of the DO-HEALTH trial

    Get PDF
    Background and aim Iron deficiency is associated with increased morbidity and mortality in older adults. However, data on its prevalence and incidence among older adults is limited. The aim of this study was to investigate the prevalence and incidence of iron deficiency in European community-dwelling older adults aged ≥ 70 years. Methods Secondary analysis of the DO-HEALTH trial, a 3-year clinical trial including 2157 community-dwelling adults aged ≥ 70 years from Austria, France, Germany, Portugal and Switzerland. Iron deficiency was defined as soluble transferrin receptor (sTfR) > 28.1 nmol/L. Prevalence and incidence rate (IR) of iron deficiency per 100 person-years were examined overall and stratified by sex, age group, and country. Sensitivity analysis for three commonly used definitions of iron deficiency (ferritin  1.5) were also performed. Results Out of 2157 participants, 2141 had sTfR measured at baseline (mean age 74.9 years; 61.5% women). The prevalence of iron deficiency at baseline was 26.8%, and did not differ by sex, but by age (35.6% in age group ≥ 80, 29.3% in age group 75–79, 23.2% in age group 70–74); P  1.5. Occurrences of iron deficiency were observed with IR per 100 person-years of 9.2 (95% CI 8.3–10.1) and did not significantly differ by sex or age group. The highest IR per 100 person-years was observed in Austria (20.8, 95% CI 16.1–26.9), the lowest in Germany (6.1, 95% CI 4.7–8.0). Regarding the other definitions of iron deficiency, the IR per 100 person-years was 4.5 (95% CI 4.0–4.9) for ferritin  1.5. Conclusions Iron deficiency is frequent among relatively healthy European older adults, with people aged ≥ 80 years and residence in Austria and Portugal associated with the highest risk

    Low Bone Turnover Due to Hypothyroidism or Anti-Resorptive Treatment Does Not Affect Whole-Body Glucose Homeostasis in Male Mice

    No full text
    Bone is a large and dynamic tissue and its maintenance requires high amounts of energy as old or damaged bone structures need to be replaced during the process of bone remodeling. Glucose homeostasis is an essential prerequisite for a healthy bone and vice versa, the skeleton can act as an endocrine organ on energy metabolism. We recently showed that hypothyroidism in mice leads to an almost complete arrest of bone remodeling. Here, we aimed to investigate whether the profound suppression of bone remodeling affects whole-body glucose homeostasis. To that end, male C57BL/6JRj mice were rendered hypothyroid over 4 weeks using methimazole and sodium perchlorate in the drinking water. We confirmed trabecular bone gain due to decreased bone turnover in hypothyroid mice with decreased cortical but increased vertebral bone strength. Further, we found impaired glucose handling but not insulin resistance with hypothyroidism. In hypothyroid bone, glucose uptake and expression of glucose transporter Glut4 were reduced by 44.3% and 13.9%, respectively, suggesting lower energy demands. Nevertheless, hypothyroidism led to distinct changes in glucose uptake in muscle, liver, and epididymal white adipose tissue (eWAT). Reduced glucose uptake (−30.6%) and Glut1/Glut4 transcript levels (−31.9%/−67.5%) were detected in muscle tissue. In contrast, in liver and eWAT we observed increased glucose uptake by 25.6% and 68.6%, respectively, and upregulated expression of glucose transporters with hypothyroidism. To more specifically target bone metabolism and discriminate between the skeletal and systemic effects of hypothyroidism on energy metabolism, male mice were treated with zoledronate (ZOL), a bisphosphonate, that led to decreased bone turnover, trabecular bone gain, and reduced local glucose uptake into bone (−40.4%). However, ZOL-treated mice did not display alterations of systemic glucose handling nor insulin tolerance. Despite the close mutual crosstalk of bone and glucose metabolism, in this study, we show that suppressing bone remodeling does not influence whole-body glucose homeostasis in male mice

    Iron Deficiency and Incident Infections among Community-Dwelling Adults Age 70 Years and Older:Results from the DO-HEALTH Study

    Get PDF
    Objectives: To assess if baseline iron deficiency, with or without anemia, is associated with incident infections over 3 years among community-dwelling older adults. Design: Prospective secondary analysis of DO-HEALTH, a 3-year randomized, double-blind controlled trial. Setting And Participants: 2157 community-dwelling adults age 70+ from 5 European countries with good cognitive function and mobility and no major health events in the 5 years prior to enrollment Measurements: Incident infections, their severity and type were recorded every 3 months throughout the 3-year follow-up. Iron deficiency was defined as soluble transferrin receptor (sTfR) levels > 28.1 nmol/l and anemia as hemoglobin levels < 120 g/l for women and 130 g/l for men. We applied negative binomial mixed effects regression models with random effects for countries, and controlling for treatment allocation, age, sex, body mass index, polypharmacy, number of comorbidities, smoking status, living situation, alcohol intake, frailty status, and physical activity levels. A pre-defined stratified analysis was performed to explore if the associations between iron deficiency and infections were consistent by baseline anemia status. Results: In total, 2141 participants were included in the analyses (mean age 74.9 years, 61.5% of women, 26.8% with iron deficiency). Across all participants, baseline iron deficiency was not associated with incident overall infections, but was associated with a 63% greater rate of incident severe infections requiring hospitalization (incidence rate ratio [IRR] 1.63, 95% Confidence Interval [CI] 1.11–2.41, p=0.01). This association was more pronounced among the 2000 participants who did not have anemia at baseline (IRR=1.80, 95% CI 1.20–2.69, p=0.005). Conclusion: Based on this prospective study among generally healthy European community-dwelling older adults, iron deficiency was not associated with the incidence rate of overall infections but may increase the incidence of severe infections. Intervention studies are needed to prove the causality of this observation
    corecore