11 research outputs found

    Aryl hydrocarbon receptor upregulates IL-1ÎČ expression in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure

    No full text
    International audienceThe AhR is a cytosolic ligand-dependent transcription factor activated by both endogenous and exogenous chemicals. It can regulate expression of many target genes including some inflammatory cytokines and chemokines. To date AhR implication in the regulation of inflammatory cytokines and chemokines at human cerebral endothelium has not been addressed. In the present study, we investigated whether AhR could regulate the expression of two pro-inflammatory cytokines and one chemokine i.e. IL-1ÎČ, IL-6 and IL-8 in the hCMEC/D3 human cerebral microvascular endothelial cell line. Exposure to TCDD increased IL-1ÎČ mRNA expression levels in hCMEC/D3. By using small interfering RNA against AhR we demonstrated that TCDD effects on IL-1ÎČ expression were mediated through AhR activation. Regarding IL-6 and IL-8, TCDD exposure had little or no effect on their mRNA levels in hCMEC/D3. In conclusion, our findings suggest that AhR-mediated IL-1ÎČ regulation in cerebral endothelium could induce BBB breakdown and contribute to the pathogenesis of a variety of neurologic disorders

    Infering an ontology of single cell motions from high-throughput microscopy data

    No full text
    International audienceCellular motility is a fundamental biological process. Progress in the fields of gene silencing and high-throughput (HT) microscopy provide us with the tools to study its molecular basis and potential perturbators. The primary contribution of this paper is to present MotIW, a generic workflow for single cell motility study in HT time-lapse screening data. We successfully apply it to a simulated screen, as well as a genome-wide screen. Furthermore, MotIW enables the identification of eigth motility patterns into which all trajectories from this dataset divide up into, without any prior model of cell motion

    Cellular prion protein dysfunction in a prototypical inherited metabolic myopathy

    No full text
    International audienceInherited fatty acid oxidation diseases in their mild forms often present as metabolic myopathies. Carnitine Palmitoyl Transferase 2 (CPT2) deficiency, one such prototypical disorder is associated with compromised myotube differentiation. Here, we show that CPT2-deficient myotubes exhibit defects in focal adhesions and redox balance, exemplified by increased SOD2 expression. We document unprecedented alterations in the cellular prion protein PrPC, which directly arise from the failure in CPT2 enzymatic activity. We also demonstrate that the loss of PrPC function in normal myotubes recapitulates the defects in focal adhesion, redox balance and differentiation hallmarks monitored in CPT2-deficient cells. These results are further corroborated by studies performed in muscles from Prnp-/- mice. Altogether, our results unveil a molecular scenario, whereby PrPC dysfunction governed by faulty CPT2 activity may drive aberrant focal adhesion turnover and hinder proper myotube differentiation. Our study adds a novel facet to the involvement of PrPC in diverse physiopathological situations

    SDHi fungicides: An example of mitotoxic pesticides targeting the succinate dehydrogenase complex

    No full text
    Succinate dehydrogenase inhibitors (SDHi) are fungicides used to control the proliferation of pathogenic fungi in crops. Their mode of action is based on blocking the activity of succinate dehydrogenase (SDH), a universal enzyme expressed by all species harboring mitochondria. The SDH is involved in two interconnected metabolic processes for energy production: the transfer of electrons in the mitochondrial respiratory chain and the oxidation of succinate to fumarate in the Krebs cycle. In humans, inherited SDH deficiencies may cause major pathologies including encephalopathies and cancers. The cellular and molecular mechanisms related to such genetic inactivation have been well described in neuroendocrine tumors, in which it induces an oxidative stress, a pseudohypoxic phenotype, a metabolic, epigenetic and transcriptomic remodeling, and alterations in the migration and invasion capacities of cancer cells, in connection with the accumulation of succinate, an oncometabolite, substrate of the SDH. We will discuss recent studies reporting toxic effects of SDHi in non-target organisms and their implications for risk assessment of pesticides. Recent data show that the SDH structure is highly conserved during evolution and that SDHi can inhibit SDH activity in mitochondria of non-target species, including humans. These observations suggest that SDHi are not specific inhibitors of fungal SDH. We hypothesize that SDHi could have toxic effects in other species, including humans. Moreover, the analysis of regulatory assessment reports shows that most SDHi induce tumors in animals without evidence of genotoxicity. Thus, these substances could have a non-genotoxic mechanism of carcinogenicity that still needs to be fully characterized and that could be related to SDH inhibition. The use of pesticides targeting mitochondrial enzymes encoded by tumor suppressor genes raises questions on the risk assessment framework of mitotoxic pesticides. The issue of SDHi fungicides is therefore a textbook case that highlights the urgent need for changes in regulatory assessment

    Design, synthesis and biological evaluations of covalent inhibitors of Focal Adhesion Kinase (FAK) against human malignant glioblastoma

    No full text
    66 p.-7 fig.-4 tab.-3 schem.Human malignant glioblastoma (GBM) is a highly invasive and lethal brain tumor. Targeting of integrin downstream signaling mediators in GBM such as focal adhesion kinase (FAK) seems reasonable and recently demonstrated promising results in early clinical studies. Herein, we report the structure-guided development of a series of covalent inhibitors of FAK. These new compounds displayed highly potent inhibitory potency against FAK enzymatic activity with IC50 values in the nanomolar range. Several inhibitors retarded tumor cell growth as assessed by a cell viability assay in multiple human glioblastoma cell lines. They also significantly reduced the rate of U-87 cell migration and delayed the cell cycle progression by stopping cells in the G2/M phase. Furthermore, these inhibitors showed a potent decrease of autophosphorylation of FAK in glioblastoma cells and its downstream effectors Akt and Erk as well as nuclear factor-ÎșB. These data demonstrated that these inhibitors may have the potential to offer a promising new targeted therapy for human glioblastomas.We gratefully thank the support from la Ligue contre le cancer Paris Ile-de-France. BL thanks the China Scholarship Council (CSC) for financial support.YL thanks the support from National Natural Science Foundation of China (Grants 21672043). DL acknowledges support from Spanish Ministry of Economy, Industry and Competitiveness for the Retos Grant BFU2016-77665-R and the Ministry of Science, Innovation and Universities for the Spanish State Research Agency Retos Grant RTI2018-099318-B-I00, both cofunded by the European Regional Development Fund (FEDER).Peer reviewe

    Expression, Localization, and Activity of the Aryl Hydrocarbon Receptor in the Human Placenta

    No full text
    International audienceThe human placenta is an organ between the blood of the mother and the fetus, which is essential for fetal development. It also plays a role as a selective barrier against environmental pollutants that may bypass epithelial barriers and reach the placenta, with implications for the outcome of pregnancy. The aryl hydrocarbon receptor (AhR) is one of the most important environmental-sensor transcription factors and mediates the metabolism of a wide variety of xenobiotics. Nevertheless, the identification of dietary and endogenous ligands of AhR suggest that it may also fulfil physiological functions with which pollutants may interfere. Placental AhR expression and activity is largely unknown. We established the cartography of AhR expression at transcript and protein levels, its cellular distribution, and its transcriptional activity toward the expression of its main target genes. We studied the profile of AhR expression and activity during different pregnancy periods, during trophoblasts differentiation in vitro, and in a trophoblast cell line. Using diverse methods, such as cell fractionation and immunofluorescence microscopy, we found a constitutive nuclear localization of AhR in every placental model, in the absence of any voluntarily-added exogenous activator. Our data suggest an intrinsic activation of AhR due to the presence of endogenous placental ligands

    A new AMPK activator, GSK773, corrects fatty acid oxidation and differentiation defect in CPT2-deficient myotubes

    No full text
    International audienceCarnitine palmitoyl transferase 2 (CPT2) deficiency is one of the most common inherited fatty acid oxidation (FAO) defects and represents a prototypical mitochondrial metabolic myopathy. Recent studies have suggested a pivotal role of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle plasticity and mitochondrial homeostasis. Thus, we tested the potential of GSK773, a novel direct AMPK activator, to improve or correct FAO capacities in muscle cells from patients harboring various mutations. We used controls' and patients' myotubes and studied the parameters of FAO metabolism, of mitochondrial quantity and quality and of differentiation. We found that AMPK is constitutively activated in patients' myotubes, which exhibit both reduced FAO and impaired differentiation. GSK773 improves or corrects several metabolic hallmarks of CPT2 deficiency (deficient FAO flux and C16-acylcarnitine accumulation) by upregulating the expression of CPT2 protein. Beneficial effects of GSK773 are also likely due to stimulation of mitochondrial biogenesis and induction of mitochondrial fusion, by decreasing dynamin-related protein 1 and increasing mitofusin 2. GSK773 also induces a shift in myosin heavy chain isoforms toward the slow oxidative type and, therefore, fully corrects the differentiation process. We establish, through small interfering RNA knockdowns and pharmacological approaches, that these GSK773 effects are mediated through peroxisome proliferator-activated receptor gamma co-activator 1-alpha, reactive oxygen species and p38 mitogen-activated protein kinase, all key players of skeletal muscle plasticity. GSK773 recapitulates several important features of skeletal muscle adaptation to exercise. The results show that AMPK activation by GSK773 evokes the slow, oxidative myogenic program and triggers beneficial phenotypic adaptations in FAO-deficient myotubes. Thus, GSK773 might have therapeutic potential for correction of CPT2 deficiency

    Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice

    No full text
    International audienceIn spite of the great promises that the development of nanotechnologies can offer, concerns regarding potential adverse health effects of occupational exposure to nanoparticle (NP) is raised. We recently identified metal oxide NP in lung tissue sections of welders, located inside macrophages infiltrated in fibrous regions. This suggests a role of these NP in the lung alterations observed in welders. We therefore designed a study aimed to investigate the pulmonary effects, in mice, of repeated exposure to NP administered at occupationally relevant doses. We therefore chose four metal oxide NPs representative of those found in the welder’s lungs: Fe2O3, Fe3O4, MnFe2O4 and CrOOH. These NPs were administered weekly for up to 3 months at two different doses: 5 ÎŒg, chosen as occupationally relevant to welding activity, and 50 ÎŒg, chosen as occupationally relevant to the context of an NP-manufacturing facility. Our results show that 3 month-repeated exposures to 5 ÎŒg NP induced limited pulmonary effects, characterized by the development of a mild peribronchiolar fibrosis observed for MnFe2O4 and CrOOH NP only. This fibrotic event was further extended in terms of intensity and localization after the repeated administration of 50 ÎŒg NP: all but Fe2O3 NP induced the development of peribronchiolar, perivascular and alveolar fibrosis, together with an interstitial inflammation. Our data demonstrate for the first time a potential risk for respiratory health posed by repeated exposure to NP at occupationally relevant doses. Given these results, the development of occupational exposure limits (OELs) specifically dedicated to NP exposure might therefore be an important issue to address
    corecore