15 research outputs found

    Coulomb heating behavior of fast light diclusters thorough the Si ⟨ 110 ⟩ direction: influence of the mean charge state

    No full text
    In this work we report on the results for the Coulomb heating of H+2, B+2 and C+2 diclusters traveling in Si 〈 110 ⟩ direction covering an energy range from 200 keV/ion to 2400 keV/ion. Those results were obtained by combining the Rutherford backscattering spectrometry (RBS) and the particle induced X-ray emission (PIXE) techniques. By comparing the present results to those obtained previously for ions traveling in the narrower Si ⟨ 100 ⟩ channel, several common features are observed for the Coulomb heating values; especially, they follow a linear relationship as a function of the stored potential per ion. However, at variance with previous results, it is shown that the use of a Dirac-Hartree-Fock-Slater (DHFS) potential based on the ion mean charge states in amorphous targets leads to a considerable disagreement between the Coulomb heating values and the expected potential energies stored in the dicluster prior to the Coulomb explosion. In order to investigate this problem, a numerical procedure was developed in order to calculate the mean charge state values for ions traveling under channeling conditions. The use of the resulting charge states led to a linear relationship between the Coulomb heating values and the stored potential energy per ion of the diclusters. Moreover, the Coulomb heating/stored potential energy ratio amounts to about 2/3, which is in full agreement with those results obtained for the Si ⟨ 100 ⟩ direction

    Neutralization and wake effects on the Coulomb explosion of swift H-2(+) ions traversing thin films

    Get PDF
    The Coulomb explosion of small cluster beams can be used to measure the dwell time of fragments traversing amorphous films. Therefore, the thickness of thin films can be obtained with the so-called Coulomb depth profiling technique using relatively high cluster energies where the fragments are fully ionized after breakup. Here we demonstrate the applicability of Coulomb depth profiling technique at lower cluster energies where neutralization and wake effects come into play. To that end, we investigated 50-200 keV/u H2+ molecular ions impinging on a 10 nm TiO2 film and measured the energy of the backscattered H+ fragments with high-energy resolution. The effect of the neutralization of the H+ fragments along the incoming trajectory before the backscattering collision is clearly observed at lower energies through the decrease of the energy broadening due to the Coulomb explosion. The reduced values of the Coulomb explosion combined with full Monte Carlo simulations provide compatible results with those obtained at higher cluster energies where neutralization is less important. The results are corroborated by electron microscopy measurements

    Profiling As plasma doped Si/SiO2 with molecular ions

    No full text
    Arsenic profiles in plasma doped silicon wafers were traced by scattering of H+ and H+2 ions at medium energies. Two wafers were doped with the same bias, gas pressure, total implanted dose and AsH3 concentration. After implantation, the wafers were submitted to industrial cleaning processes, resulting in the formation of a surface SiO2 layer, and one wafer was subjected to an additional thermal treatment. Scattering spectra of single and molecular ion beams with the same energy per nucleon and charge state differed only by the energy broadening due to the break-up of the molecule, allowing depth profiling by calculation of the dwell time before the backscattering collision. For the SiO2 layers of these samples a density reduction of, on average, 13% was observed, compared to thermally grown SiO2. In addition, the arsenic depth-profile determined were in close agreement with independent findings obtained by electron techniques

    Stopping and straggling of H and He in ZnO

    No full text
    We present experimental and theoretical values for the energy loss of H and He ions in Zinc oxide, in mean value (stopping per unit path length) and mean square value (energy loss straggling). The measurements were carried out using the Rutherford Backscattering technique for (300–2000) keV H ions and (300–5000) keV He ions. Present experimental data are the first set of stopping and straggling values in this oxide. The theoretical research was encouraged considering the molecular description of ZnO as crystal solid using the density functional theory. The energy loss calculations for H and He ions with different charge states were performed with the shelwise local plasma approximation (SLPA). The molecular versus the Bragg-rule description is also discussed. The equilibrium charge state of He inside ZnO is analyzed based on the present stopping measurements, and a semiempirical charge state distribution is proposed. Present experimental and theoretical values show good agreement for both the stopping and the straggling. We also compare our data with the SRIM2013 and with CasP5.2 values

    Experimental and theoretical study of the energy loss of C and O in Zn

    No full text
    We present a combined experimental-theoretical study of the energy loss of C and O ions in Zn in the energy range 50–1000 keV/amu. This contribution has a double purpose, experimental and theoretical. On the experimental side, we present stopping power measurements that fill a gap in the literature for these projectiletarget combinations and cover an extended energy range, including the stopping maximum. On the theoretical side, we make a quantitative test on the applicability of various theoretical approaches to calculate the energy loss of heavy swift ions in solids. The description is performed using different models for valence and inner-shell electrons: a nonperturbative scattering calculation based on the transport cross section formalism to describe the Zn valence electron contribution, and two different models for the inner-shell contribution: the shellwise local plasma approximation (SLPA) and the convolution approximation for swift particles (CasP). The experimental results indicate that C is the limit for the applicability of the SLPA approach, which previously was successfully applied to projectiles from H to B.We find that this model clearly overestimates the stopping data for O ions. The origin of these discrepancies is related to the perturbative approximation involved in the SLPA. This shortcoming has been solved by using the nonperturbative CasP results to describe the inner-shell contribution, which yields a very good agreement with the experiments for both C and O ions

    Experimental and theoretical study of the energy loss of Be and B ions in Zn

    Get PDF
    Energy-loss measurements and theoretical calculations for Be and B ions in Zn are presented. The experimental ion energies range from 40 keV/u to 1 MeV/u, which includes the energy-loss maximum and covers a lack of experimental data for these systems from intermediate to high energies. The measurements were performed using the Rutherford backscattering technique. The ab initio calculations are based on the extended Friedel sum rule–transport cross-section method for the valence electrons and the Shellwise local plasma approximation for the bound electrons. A comparison of these calculations to the present experimental data for Be and B and previous values for H, He, and Li ions on the same target is included. This confirms the applicability of the employed theoretical framework also for ions of intermediate atomic number

    Experimental and theoretical study of the energy loss of C and O in Zn

    Get PDF
    We present a combined experimental-theoretical study of the energy loss of C and O ions in Zn in the energy range 50–1000 keV/amu. This contribution has a double purpose, experimental and theoretical. On the experimental side, we present stopping power measurements that fill a gap in the literature for these projectiletarget combinations and cover an extended energy range, including the stopping maximum. On the theoretical side, we make a quantitative test on the applicability of various theoretical approaches to calculate the energy loss of heavy swift ions in solids. The description is performed using different models for valence and inner-shell electrons: a nonperturbative scattering calculation based on the transport cross section formalism to describe the Zn valence electron contribution, and two different models for the inner-shell contribution: the shellwise local plasma approximation (SLPA) and the convolution approximation for swift particles (CasP). The experimental results indicate that C is the limit for the applicability of the SLPA approach, which previously was successfully applied to projectiles from H to B.We find that this model clearly overestimates the stopping data for O ions. The origin of these discrepancies is related to the perturbative approximation involved in the SLPA. This shortcoming has been solved by using the nonperturbative CasP results to describe the inner-shell contribution, which yields a very good agreement with the experiments for both C and O ions
    corecore