16 research outputs found

    Iron-rich solar particle events measured by SOHO/ERNE during two solar cycles

    Full text link
    We study the differences in the heavy ion composition of solar energetic particle (SEP) events between solar cycles 23 and 24. We have surveyed the SOHO/ERNE heavy ion data from the beginning of solar cycle 23 until the end of June 2015, that is, well into the declining phase of cycle 24. We used this long observation period to study the properties of heavy ions (from C to Fe) and to compare the two solar cycles in this respect. We surveyed the data for SEP events with enhancements in the Fe/C and Fe/O intensity ratios in the energy range 5-15 MeV per nucleon, and associated the events with solar flare and coronal mass ejections (CME) when possible. We studied the properties of heavy ions in these events and compared the average relative abundances of heavy ions between the two solar cycles. We found that fewer days had C and O intensities higher than ~10−3^{-3} cm−2^{-2}sr−1^{-1}s−1^{-1}(MeVn−1^{-1})−1^{-1} during solar cycle 24 than during cycle 23. For Fe this difference was clear even at lower intensities. We also found that fewer days had Fe/(C+O) > 0.183 during cycle 24. We identified 86 SEP events with at least one Fe-rich day, 65 of which occurred during cycle 23 and only 21 during cycle 24. We found that impulsive events have been almost completely absent during cycle 24. Mean abundances of heavy ions in the events were found to be significantly lower during cycle 24 than in cycle 23. Our results reflect the reduced solar activity in cycle 24 and indicate lower efficiency of particle acceleration processes for both gradual and impulsive SEP events in cycle 24.Comment: 14 pages, 9 figures and 3 tables. To be published in A&

    Iron-rich solar particle events measured by SOHO/ERNE during two solar cycles

    Get PDF
    Aims. We study the differences in the heavy ion composition of solar energetic particle (SEP) events between solar cycles 23 and 24. Methods. We have surveyed the SOHO/ERNE heavy ion data from the beginning of solar cycle 23 until the end of June 2015, that is, well into the declining phase of cycle 24. We used this long observation period to study the properties of heavy ions (from C to Fe) and to compare the two solar cycles in this respect. We surveyed the data for SEP events with enhancements in the Fe/C and Fe/O intensity ratios in the energy range 5–15 MeV per nucleon, and associated the events with solar flare and coronal mass ejections (CME) when possible. We studied the properties of heavy ions in these events and compared the average relative abundances of heavy ions between the two solar cycles. Results. We found that fewer days had C and O intensities higher than ~10 -3 cm-2 sr-1 s-1 (MeVn-1)-1 during solar cycle 24 than during cycle 23. For Fe this difference was clear even at lower intensities. We also found that fewer days had Fe/(C+O) > 0.183 during cycle 24. We identified 86 SEP events with at least one Fe-rich day, 65 of which occurred during cycle 23 and only 21 during cycle 24. We found that impulsive events have been almost completely absent during cycle 24. Mean abundances of heavy ions in the events were found to be significantly lower during cycle 24 than in cycle 23. Our results reflect the reduced solar activity in cycle 24 and indicate lower efficiency of particle acceleration processes for both gradual and impulsive SEP events in cycle 24.</p

    Updated Model of the Solar Energetic Proton Environment in Space

    Get PDF
    The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) model provides environment specification outputs for all aspects of the Solar Energetic Particle (SEP) environment. The model is based upon a thoroughly cleaned and carefully processed data set. Herein the evolution of the solar proton model is discussed with comparisons to other models and data. This paper discusses the construction of the underlying data set, the modelling methodology, optimisation of fitted flux distributions and extrapolation of model outputs to cover a range of proton energies from 0.1 MeV to 1 GeV. The model provides outputs in terms of mission cumulative fluence, maximum event fluence and peak flux for both solar maximum and solar minimum periods. A new method for describing maximum event fluence and peak flux outputs in terms of 1-in-x-year SPEs is also described. SAPPHIRE proton model outputs are compared with previous models including CREME96, ESP-PSYCHIC and the JPL model. Low energy outputs are compared to SEP data from ACE/EPAM whilst high energy outputs are compared to a new model based on GLEs detected by Neutron Monitors (NMs)

    GUMICS-4 analysis of interplanetary coronal mass ejection impact on Earth during low and typical Mach number solar winds

    Get PDF
    We study the response of the Earth's magnetosphere to fluctuating solar wind conditions during interplanetary coronal mass ejections (ICMEs) using the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4). The two ICME events occurred on 15-16 July 2012 and 29-30 April 2014. During the strong 2012 event, the solar wind upstream values reached up to 35 particles cm(-3), speeds of up to 694 km s(-1), and an interplanetary magnetic field of up to 22 nT, giving a Mach number of 2.3. The 2014 event was a moderate one, with the corresponding upstream values of 30 particles cm(-3), 320 km s(-1) and 10 nT, indicating a Mach number of 5.8. We examine how the Earth's space environment dynamics evolves during both ICME events from both global and local perspectives, using well-established empirical models and in situ measurements as references. We show that on the large scale, and during moderate driving, the GUMICS-4 results are in good agreement with the reference values. However, the local values, especially during high driving, show more variation: such extreme conditions do not reproduce local measurements made deep inside the magnetosphere. The same appeared to be true when the event was run with another global simulation. The cross-polar cap potential (CPCP) saturation is shown to depend on the Alfven-Mach number of the upstream solar wind. However, care must be taken in interpreting these results, as the CPCP is also sensitive to the simulation resolution

    Catalogue of 55-80 MeV solar proton events extending through solar cycles 23 and 24

    Get PDF
    We present a new catalogue of solar energetic particle events near the Earth, covering solar cycle 23 and the majority of solar cycle 24 (1996-2016), based on the 55-80 MeV proton intensity data gathered by the Solar and Heliospheric Observatory/the Energetic and Relativistic Nuclei and Electron experiment (SOHO/ERNE). In addition to ERNE proton and heavy ion observations, data from the Advanced Composition Explorer/Electron, Proton and Alpha Monitor (ACE/EPAM) (near-relativistic electrons), SOHO/EPHIN (Electron Proton Helium Instrument) (relativistic electrons), SOHO/LASCO (Large Angle and Spectrometric Coronagraph) (coronal mass ejections, CMEs) and Geostationary Operational Environmental Satellite (GOES) soft X-ray experiments are also considered and the associations between the particle and CME/X-ray events deduced to obtain a better understanding of each event. A total of 176 solar energetic particle (SEP) events have been identified as having occurred during the time period of interest; their onset and solar release times have been estimated using both velocity dispersion analysis (VDA) and time-shifting analysis (TSA) for protons, as well as TSA for near-relativistic electrons. Additionally, a brief statistical analysis was performed on the VDA and TSA results, as well as the X-rays and CMEs associated with the proton/electron events, both to test the viability of the VDA and to investigate possible differences between the two solar cycles. We find, in confirmation of a number of previous studies, that VDA results for protons that yield an apparent path length of 1 AU < s less than or similar to 3 AU seem to be useful, but those outside this range are probably unreliable, as evidenced by the anticorrelation between apparent path length and release time estimated from the X-ray activity. It also appears that even the first-arriving energetic protons apparently undergo significant pitch angle scattering in the interplanetary medium, with the resulting apparent path length being on average about twice the length of the spiral magnetic field. The analysis indicates an increase in high-energy SEP events originating from the far-eastern solar hemisphere; for instance, such an event with a well-established associated GOES flare has so far occurred three times during cycle 24 but possibly not at all during cycle 23. The generally lower level of solar activity during cycle 24, as opposed to cycle 23, has probably caused a significant decrease in total ambient pressure in the interplanetary space, leading to a larger proportion of SEP-associated halo-type CMEs. Taken together, these observations point to a qualitative difference between the two solar cycles

    The first SEPServer event catalogue ~68-MeV solar proton events observed at 1 AU in 1996-2010

    Get PDF
    SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In&nbsp; this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (~68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU &lt; s &lt; 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length of the spiral magnetic field line. This implies that the path length of first-arriving&nbsp; MeV to deka-MeV protons is affected by interplanetary scattering. TSA of near-relativistic electrons results in a release time that shows significant scatter with respect to the EM emissions but with a trend of being delayed more with increasing distance between the flare and the nominal footpoint of the Earth-connected field line

    Annual integral solar proton fluences for 1984–2019

    No full text
    Aims. Long-term fluxes or integral fluences of solar energetic particles (SEPs), and their variability within and beyond the 11-year solar cycle, make an important contribution to space physics. However, large uncertainties exist in the evaluation of average SEP fluxes or fluences over the last few decades, as they have been assessed by different methods and from different datasets. Here we revisit the derivation of annual integral SEP fluences from available data based on in situ measurements since 1984. Methods. We reconstructed a full time series of integral SEP fluxes above 10, 30, 60, 100, and 200 MeV for the period from 1984 to 2019 using observations performed by the GOES satellites. Intercalibration of the fluxes was performed via a linear relation between overlapping pairs of observations in order to obtain a uniform dataset. Galactic cosmic ray (GCR) background subtraction and identification of SEP event periods were carefully performed, allowing for a precise calculation of annual SEP fluences. Results. Annual integral fluences of SEPs with energies above 10, 30, 60, 100, and 200 MeV were calculated for the period from 1984 to 2019 (solar cycles 22–24), along with their uncertainties. It is shown that solar cycle 24 was significantly (by a factor of 5–8) weaker in the SEP fluence than the preceding cycles 22 and 23. The cumulative occurrence probability of years with the fluence above a given value is found to be perfectly described by the Weibull distribution. This can be used as a projection for the occurrence of solar extreme eruptive events on the secular timescales

    Annual integral solar proton fluences for 1984–2019

    No full text
    Abstract Aims: Long-term fluxes or integral fluences of solar energetic particles (SEPs), and their variability within and beyond the 11-year solar cycle, make an important contribution to space physics. However, large uncertainties exist in the evaluation of average SEP fluxes or fluences over the last few decades, as they have been assessed by different methods and from different datasets. Here we revisit the derivation of annual integral SEP fluences from available data based on in situ measurements since 1984. Methods: We reconstructed a full time series of integral SEP fluxes above 10, 30, 60, 100, and 200 MeV for the period from 1984 to 2019 using observations performed by the GOES satellites. Intercalibration of the fluxes was performed via a linear relation between overlapping pairs of observations in order to obtain a uniform dataset. Galactic cosmic ray (GCR) background subtraction and identification of SEP event periods were carefully performed, allowing for a precise calculation of annual SEP fluences. Results: Annual integral fluences of SEPs with energies above 10, 30, 60, 100, and 200 MeV were calculated for the period from 1984 to 2019 (solar cycles 22–24), along with their uncertainties. It is shown that solar cycle 24 was significantly (by a factor of 5–8) weaker in the SEP fluence than the preceding cycles 22 and 23. The cumulative occurrence probability of years with the fluence above a given value is found to be perfectly described by the Weibull distribution. This can be used as a projection for the occurrence of solar extreme eruptive events on the secular timescales
    corecore