294 research outputs found

    Inclusion of on-site renewables in design-stage building life cycle assessments

    Get PDF
    This paper investigates the inclusion of renewables in building life cycle assessments. On-site renewable electricity generation is increasingly common in the built environment, but existing guidance for the inclusion of these renewable systems in design-stage life cycle assessment is limited. The life cycle assessment of a building with 42.8 kWpeak solar photovoltaic array is used as a case study to investigate the effect of different assumptions on the assessment outcome. The case study results are then used to suggest good practice. The paper also highlights where further research is required to provide reliable design-stage assessments in future

    Dealing with waste products and flows in life cycle assessment and emergy accounting: methodological overview and synergies

    Get PDF
    This paper considers the different approaches taken in dealing with waste products and flows in Life Cycle Assessment (LCA) and Emergy Accounting (EMA), from a methodological point of view, and aims to develop more standardized and synergistic procedures. LCA deals with the waste issue from the point of view of the impact of their disposal, as well as the potential benefit (‘environmental credit’) afforded by the avoided extraction and processing of additional primary resources when waste is recycled or its energy content recovered. The ‘environmental burden’ associated to the entire production and consumption chain leading to the waste item is generally not included in LCAs of waste management systems, due to the boundary being placed – consistently with the intended goal – around the actual disposal processes (including recycling alternatives and associated environmental credits). Instead, Emergy Accounting, a donor-side approach with its implicit boundary set at the biosphere level, in principle keeps track of the entire supply-chain at all times, considering even waste flows as products (or co-products), and calculating their intensity factors and assessing their role within the ecosystem's web and hierarchy. However, when the focus is limited to evaluating processes under human control, within the narrower space and time boundary of human-dominated production and consumption processes, waste products can arguably be regarded as something to be recycled or disposed of to minimize the environmental burden. When this is the case, and particularly in comparative analyses, the emergy perspective thus becomes closer to the LCA perspective and interesting methodological synergies may emerge. A clearly defined set of emergy algebra rules for waste products and flows, and specifically for recycling, was found to be still lacking in the available emergy literature. We propose here that a better and more consistent methodological solution may be arrived at by leveraging the work done in LCA

    Introducing a new method for calculating the environmental credits of end-of-life material recovery in attributional LCA

    Get PDF
    Purpose This paper aims to provide an alternative method for calculating the environmental credits associated with material recycling in life cycle assessment (LCA) of waste management systems. The method proposed here is more consistent with the general attributional approach in LCA than the hitherto common practice of simply assuming a 1:1 substitution of primary material production. Methods The formula proposed for estimating the environmental credit is applicable for the recovered materials that are reintroduced into the market (outputs of the recycling facilities), after all process losses in the various stages of the waste management system have been accounted for. It considers the displacement of materials by using the mix of virgin and recycled materials for each individual material that is used in the market for the production of goods. Moreover, it also considers the changes in the inherent properties of the materials undergoing a recycling process (‘down-cycling’), by introducing a quality (Q) factor, affecting the proportion of virgin material that is accounted for. Results and discussion Example applications of the proposed formula to a number of different materials (aluminium, steel, paper and cardboard and plastics) illustrate the range of possible results obtained.. The environmental credit calculated using the proposed formula can be interpreted as an indication of the remaining margin for improvement, since it depends on the existing mix of virgin and recycled materials already on the market, and on the potential of the recycled material to actually replace the primary one on a functional basis. We also discuss the possible use of a material’s Q factor to estimate the maximum allowable % of recycled material in a product consistent with the quality demands of selected applications. Conclusions and recommendations We have introduced here a consistent and unified formula for the evaluation of the credits associated with material recovery of all waste materials in waste management systems (paper, glass, plastics, metals, etc.). Such a formula requires the knowledge of the current average market consumption mixes of primary and secondary materials (or the application-specific average mixes when the final application of the recovered materials is known), and of suitable Q factors for the material(s) that are recycled. As the latter are often not readily available, more research is called for to arrive at a ready-to-use Q factors database

    Cloning, expression and characterisation of a new human low Mr phosphotyrosine protein phosphatase originating by alternative splicing

    Get PDF
    AbstractRT-PCR experiments on RNA from K562 and HepG2 cells and from human placenta led to the isolation of a novel cDNA, a further alternative splicing product of the primary transcript of low Mr phosphotyrosine phosphatase (LMW-PTP), already known to produce isoforms 1 and 2. This new transcript represents 15–20% of the total LMW-PTP mRNA in the cell. This novel cDNA codifies for a protein that we have named SV3 (splicing variant 3): the deduced protein sequence presents the first 49 residues identical to those of isoform 1, followed by 24 unrelated amino acids, due to a frameshift introduced at the novel exon-exon boundary. The SV3 protein, expressed in E. coli is enzymatically inactive, most probably because unfolded, as suggested by far-UV circular dichroism (CD) experiments. SV3 protein appears to possess the characteristics of an unstructured polypeptide chain lacking the packing of side chain residues and the secondary structure level that are typical of globular proteins. This protein could represent an inactive variant of the human LMW-PTP

    Hydrogen Bond Dynamics Near A Micellar Surface: Origin of the Universal Slow Relaxation at Complex Aqueous Interfaces

    Full text link
    The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than a hundred picosecond. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5kcal/mole.Comment: 12 pages. Phys. Rev. Lett. (Accepted) (2002
    corecore