7,543 research outputs found

    Stellar laboratories. V. The Xe VI ultraviolet spectrum and the xenon abundance in the hot DO-type white dwarf RE0503-289

    Full text link
    For the spectral analysis of spectra of hot stars with a high resolution and high signal-to-noise ratio (S/N), advanced non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that are used for their calculation. Reliable Xe VI oscillator strengths are used to identify Xe lines in the ultraviolet spectrum of the DO-type white dwarf RE0503-289 and to determine its photospheric Xe abundance. We publish newly calculated oscillator strengths that are based on a recently measured Xe VI laboratory line spectrum. These strengths were used to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models to analyze Xe VI lines exhibited in high-resolution and high S/N UV observations of RE0503-289. We identify three hitherto unknown Xe VI lines in the ultraviolet spectrum of RE0503-289 and confirm the previously measured photospheric Xe abundance of this white dwarf (log Xe = -4.2 +/- 0.6). Reliable measurements and calculations of atomic data are prerequisite for stellar-atmosphere modeling. Observed Xe VI line profiles in the ultraviolet spectrum of the white dwarf RE0503-289 were well reproduced with the newly calculated Xe VI oscillator strengths.Comment: 3 pages, 4 figure

    EC 11481-2303 - A Peculiar Subdwarf OB Star Revisited

    Full text link
    EC 11481-2303 is a peculiar, hot, high-gravity pre-white dwarf. Previous optical spectroscopy revealed that it is a sdOB star with an effective temperature (Teff) of 41790 K, a surface gravity log(g)= 5.84, and He/H = 0.014 by number. We present an on-going spectral analysis by means of non-LTE model-atmosphere techniques based on high-resolution, high-S/N optical (VLT-UVES) and ultraviolet (FUSE, IUE) observations. We are able to reproduce the optical and UV observations simultaneously with a chemically homogeneous NLTE model atmosphere with a significantly higher effective temperature and lower He abundance (Teff = 55000 K, log (g) = 5.8, and He / H = 0.0025 by number). While C, N, and O appear less than 0.15 times solar, the iron-group abundance is strongly enhanced by at least a factor of ten.Comment: 8 pages, 11 figure

    Complete spectral energy distribution of the hot, helium-rich white dwarf RX J0503.9-2854

    Full text link
    In the line-of-sight toward the DO-type white dwarf RX J0503.9-2854, the density of the interstellar medium (ISM) is very low, and thus the contamination of the stellar spectrum almost negligible. This allows us to identify many metal lines in a wide wavelength range from the extreme ultraviolet to the near infrared. In previous spectral analyses, many metal lines in the ultraviolet spectrum of RX J0503.9-2854 have been identified. A complete line list of observed and identified lines is presented here. We compared synthetic spectra that had been calculated from model atmospheres in non-local thermodynamical equilibrium, with observations. In total, we identified 1272 lines (279 of them were newly assigned) in the wavelength range from the extreme ultraviolet to the near infrared. 287 lines remain unidentified. A close inspection of the EUV shows that still no good fit to the observed shape of the stellar continuum flux can be achieved although He, C, N, O, Al, Si, P, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Cr, Ni Zn, Ga, Ge, As, Kr, Zr, Mo, Sn, Xe, and Ba are included in the stellar atmosphere models. There are two possible reasons for the deviation between observed and synthetic flux in the EUV. Opacities from hitherto unconsidered elements in the model-atmosphere calculation may be missing and/or the effective temperature is slightly lower than previously determined.Comment: 92 pages, 45 figure

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    A New Method for Controlling Tree Size?

    Get PDF
    Smaller trees reduce labor and equipment costs for fruit growers. The authors describe the effects of a chemical growth retardant on fruit trees in ISU studies

    Hydroprocessing and Blending of a Biomass-Based DTG-Gasoline

    Get PDF
    The number of annually registered internal-combustion vehicles still exceeds electric-driven ones in most regions, e.g., Germany. Ambitious goals are disclosed with the European Green Deal, which calls for new technical approaches and greenhouse gas neutral transition technologies. Such bridging technologies are synthetic fuels for the transportation sector, e.g., using the bioliq® process for a CO2-neutral gasoline supply. Fuels must meet the applicable national standards to be used in existing engines. Petrochemical parameters can be variably adapted to their requirements by hydroprocessing. In this work, we considered the upgrading of aromatic-rich DTG gasoline from the bioliq® process. The heavy gasoline was therefore separated from the light one by rectification. We investigated how to selectively modify the petrochemical parameters of the heavy gasoline, especially the boiling characteristics, to make the product suitable as a high-quality blending component. Three commercially available Pt/zeolite catalysts were tested over a wide range of temperature and space velocity. We achieved high gasoline yields, while the content of light end compounds up to a boiling temperature of 150°C could be increased significantly. In contrast to the high naphthenic content of the gasoline, the obtained octane numbers were satisfactory. Especially the Motor Octane Number turned out unexpectedly high and showed a dependency on the isomerization of the naphthenic rings. By blending the upgraded heavy gasoline with the previously separated light gasoline, we could finally show that hydroprocessing is suitable for adjusting petrochemical parameters. The aromatic concentration was 37.5% lower than that in the original raw gasoline, while the boiling characteristics improved significantly. Additionally, the final boiling point was 82°C lower, which is beneficial for the emission behavior

    Stellar laboratories. IX. New Se V, Sr IV - VII, Te VI, and I VI oscillator strengths and the Se, Sr, Te, and I abundances in the hot white dwarfs G191-B2B and RE 0503-289

    Full text link
    To analyze spectra of hot stars, advanced non-local thermodynamic equilibrium (NLTE) model-atmosphere techniques are mandatory. Reliable atomic data is for the calculation of such model atmospheres. We aim to calculate new Sr IV - VII oscillator strengths to identify for the first time Sr spectral lines in hot white dwarf (WD) stars and to determine the photospheric Sr abundances. o measure the abundances of Se, Te, and I in hot WDs, we aim to compute new Se V, Te VI, and I VI oscillator strengths. To consider radiative and collisional bound-bound transitions of Se V, Sr IV - VII, Te VI, and I VI in our NLTE atmosphere models, we calculated oscillator strengths for these ions. We newly identified four Se V, 23 Sr V, 1 Te VI, and three I VI lines in the ultraviolet (UV) spectrum of RE0503-289. We measured a photospheric Sr abundance of 6.5 +3.8/-2.4 x 10**-4 (mass fraction, 9500 - 23800 times solar). We determined the abundances of Se (1.6 +0.9/-0.6 x 10**-3, 8000 - 20000), Te (2.5 +1.5/-0.9 x 10**-4, 11000 - 28000), and I (1.4 +0.8/-0.5 x 10**-5, 2700 - 6700). No Se, Sr, Te, and I line was found in the UV spectra of G191-B2B and we could determine only upper abundance limits of approximately 100 times solar. All identified Se V, Sr V, Te VI, and I VI lines in the UV spectrum of RE0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths.Comment: 26 pages, 5 figure

    On the influence of resonance photon scattering on atom interference

    Get PDF
    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d_p/\lambda_i = y'_{12} (2\pi/kd\lambda_i), where y'_{12} is distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic center-of-mass motion, dd is the grating constant and \lambda_i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of "which-way" information for the interference visibility.Comment: 9 pages, 1 figur

    The CARMA correlator

    Get PDF
    The Combined Array for Research in Millimeter-wave Astronomy (CARMA) requires a flexible correlator to process the data from up to 23 telescopes and up to 8GHz of receiver bandwidth. The Caltech Owens Valley Broadband Reconfigurable Array (COBRA) correlator, developed for use at the Owens Valley millimeter-wave array and being used by the Sunyaev-Zeldovich Array (SZA), will be adapted for use by CARMA. The COBRA correlator system, a hybrid analog-digital design, consisting of downconverters, digitizers and correlators will be presented in this paper. The downconverters receive an input IF of 1-9GHz and produce a selectable output bandwidth of 62.5MHz, 125MHz, 250MHz, or 500MHz. The downconverter output is digitized at 1Gsample/s to 2-bits per sample. The digitized data is optionally digitally filtered to produce bands narrower than 62.5MHz (down to 2MHz). The digital correlator system is a lag- or XF-based system implemented using Field-Programmable Gate Arrays (FPGAs). The digital system implements delay lines, calculates the autocorrelations for each antenna, and the cross-correlations for each baseline. The number of lags, and hence spectral channels, produced by the system is a function of the input bandwidth; with the 500MHz band having the coarsest resolution, and the narrowest bandwidths having the finest resolution
    • …
    corecore