2,926 research outputs found

    Planning Instrumentation Monitoring in Dams

    Get PDF
    This paper outlines the seismic instrumentation being adopted for river valley projects in India, More than 60% of Indian sub-continent lies in an active seismic belt. Of this the middle and lower Himalayas constitute a major area wherein lies a huge untapped hydro-power potential, Being primarily constituted of younger rock formations, frequented by faults, thursts and shear zones and lying in a high seismic risk zone, observations through instruments play a significant role in perspective planning of projects in this area. Setting up of seismological observatories in advance of construction of dam projects, forms a part of investigative planning to assess the seismic status of the area. The observations are continued after construction to monitor any changes in seismicity due to reservoir impounding. Present approach is to also provide instrumentation and continued observation to a possible prediction of earthquake. A typical case of instrumentation for a dam on active fault is also cited

    Boiling Heat Transfer from an Array of Round Jets with Hybrid Surface Enhancements

    Get PDF
    The effect of a variety of surface enhancements on the heat transfer achieved with an array of impinging jets is experimentally investigated using the dielectric fluid HFE-7100 at different volumetric flow rates. The performance of a 5x5 array of jets, each 0.75mm in diameter, is compared to that of a single 3.75mm diameter jet with the same total open orifice area, in single-and two-phase operation. Four different target copper surfaces are evaluated: a baseline smooth flat surface, a flat surface coated with a microporous layer, a surface with macroscale area enhancement (extended square pin–fins), and a hybrid surface on which the pin–fins are coated with the microporous layer; area-averaged heat transfer and pressure drop measurements are reported. The array of jets enhances the single-phase heat transfer coefficients by 1.13–1.29 times and extends the critical heat flux (CHF) on all surfaces compared to the single jet at the same volumetric flow rates. Additionally, the array greatly enhances the heat flux dissipation capability of the hybrid coated pin–fin surface, extending CHF by 1.89–2.33 times compared to the single jet on this surface, with a minimal increase in pressure drop. The jet array coupled with the hybrid enhancement dissipates a maximum heat flux of 205.8 W/cm2 (heat input of 1.33 kW) at a flow rate of 1800 ml/min (corresponding to a jet diameter-based Reynolds number of 7800) with a pressure drop incurred of only 10.9 kPa. Compared to the single jet impinging on the smooth flat surface, the array of jets on the coated pin–fin enhanced surface increased CHF by a factor of over four at all flow rates

    Embankment Design in Seismic Areas — Indian Practice

    Get PDF
    A number of river valley projects for the development of water and power resources, particularly in the Northern and North Eastern part of India, lie on the foothills of Himalayas which is seismically active. In the developmental activity of dam building, aseismic design of dam is therefore recognized and adopted. The paper presents the current Indian practice in the aseismic design of embankment dams with illustrations from studies carried out on some recent dams

    The temperature dependent bandstructure of a ferromagnetic semiconductor film

    Full text link
    The electronic quasiparticle spectrum of a ferromagnetic film is investigated within the framework of the s-f model. Starting from the exact solvable case of a single electron in an otherwise empty conduction band being exchange coupled to a ferromagnetically saturated localized spin system we extend the theory to finite temperatures. Our approach is a moment-conserving decoupling procedure for suitable defined Green functions. The theory for finite temperatures evolves continuously from the exact limiting case. The restriction to zero conduction band occupation may be regarded as a proper model description for ferromagnetic semiconductors like EuO and EuS. Evaluating the theory for a simple cubic film cut parallel to the (100) crystal plane, we find some marked correlation effects which depend on the spin of the test electron, on the exchange coupling, and on the temperature of the local-moment system.Comment: 11 pages, 9 figure

    PKS 0537-286, carrying the information of the environment of SMBHs in the early Universe

    Get PDF
    We present the results of a multifrequency campaign on the high-redshift (z = 3.1) blazar PKS 0537-286. The source was observed at different epochs from 2006 to 2008 with INTEGRAL and Swift, and nearly simultaneously with ground-based near-IR/optical telescopes. The SEDs are compatible with a model based on synchrotron radiation and external inverse Compton scattering. The campaign gives an insight into the physical environment of the blazar.Comment: 8 pages, 5 figures, accepted for publication in A&

    The kinetic description of vacuum particle creation in the oscillator representation

    Full text link
    The oscillator representation is used for the non-perturbative description of vacuum particle creation in a strong time-dependent electric field in the framework of scalar QED. It is shown that the method can be more effective for the derivation of the quantum kinetic equation (KE) in comparison with the Bogoliubov method of time-dependent canonical transformations. This KE is used for the investigation of vacuum creation in periodical linear and circular polarized electric fields and also in the case of the presence of a constant magnetic field, including the back reaction problem. In particular, these examples are applied for a model illustration of some features of vacuum creation of electron-positron plasma within the planned experiments on the X-ray free electron lasers.Comment: 17 pages, 3 figures, v2: a reference added; some changes in tex

    The Environment of M85 optical transient 2006-1: constraints on the progenitor age and mass

    Get PDF
    M85 optical transient 2006-1 (M85 OT 2006-1) is the most luminous member of the small family of V838 Mon-like objects, whose nature is still a mystery. This event took place in the Virgo cluster of galaxies and peaked at an absolute magnitude of I~-13. Here we present Hubble Space Telescope images of M85 OT 2006-1 and its environment, taken before and after the eruption, along with a spectrum of the host galaxy at the transient location. We find that the progenitor of M85 OT 2006-1 was not associated with any star forming region. The g and z-band absolute magnitudes of the progenitor were fainter than about -4 and -6 mag, respectively. Therefore, we can set a lower limit of ~50 Myr on the age of the youngest stars at the location of the progenitor that corresponds to a mass of <7 solar mass. Previously published line indices suggest that M85 has a mean stellar age of 1.6+/-0.3 Gyr. If this mean age is representative of the progenitor of M85 OT 2006-1, then we can further constrain its mass to be less than 2 solar mass. We compare the energetics and mass limit derived for the M85 OT 2006-1 progenitor with those expected from a simple model of violent stellar mergers. Combined with further modeling, these new clues may ultimately reveal the true nature of these puzzling events.Comment: 4 pages, accepted to Ap

    Doublet structures in quantum well absorption spectra due to Fano-related interference

    Full text link
    In this theoretical investigation we predict an unusual interaction between a discrete state and a continuum of states, which is closely related to the case of Fano-interference. It occurs in a GaAs/AlxGa1-xAs quantum well between the lowest light-hole exciton and the continuum of the second heavy-hole exciton. Unlike the typical case for Fano-resonance, the discrete state here is outside the continuum; we use uniaxial stress to tune its position with respect to the onset of the continuum. State-of-the art calculations of absorption spectra show that as the discrete state approaches the continuum, a doublet structure forms which reveals anticrossing behaviour. The minimum separation energy of the anticrossing depends characteristically on the well width and is unusually large for narrow wells. This offers striking evidence for the strong underlying valence-band mixing. Moreover, it proves that previous explanations of similar doublets in experimental data, employing simple two-state models, are incomplete.Comment: 21 pages, 5 figures and 5 equations. Accepted for publication in Physical Review
    corecore