303 research outputs found

    A Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells

    Full text link
    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with non-degenerate quasi-equilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on non-equilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.Comment: 5 pages, 4 figures, all figures replaced, minor changes and additions to the tex

    Локально-оптимальные последовательные планы в дуальной постановке

    Get PDF
    Для локально-оптимального, последовательного плана в дуальной постановке вводится специальный характеристический функционал. Доказано условие необходимости и достаточности его максимизации

    Defect tolerant device geometries

    Full text link
    The term defect tolerance is widely used in literature to describe materials such as lead-halides which exhibit long non-radiative lifetimes of carriers despite possessing a large concentration of point defects. Studies on defect tolerance of materials mostly look at the properties of the host material and/or the chemical nature of defects that affect the capture coefficients of defects. However, the recombination activity of a defect is not only a function of its capture coefficients alone but are also dependent on the electrostatics and the design of the layer stack of a photovoltaic device. Here we study the influence of device geometry on defect tolerance by combining calculations of capture coefficients with device simulations. We derive generic device design principles which can inhibit recombination inside a photovoltaic device for a given set of capture coefficients based on the idea of slowing down the slower of the two processes (electron and hole capture) even further by modifying electron and hole injection into the absorber layer. We use the material parameters and typical p-i-n device geometry representing methylammonium lead halide perovskites solar cells to illustrate the application of our generic design principles to improve specific devices .Comment: 27 pages, 9 Figure

    Review and harmonization of the life-cycle global warming impact of PV-powered hydrogen production by electrolysis

    Get PDF
    This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions, strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries, system sizes, evaluation methods, and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process, 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review, full identification of the sources of discrepancies (methods applied, assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems, it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems

    Life-cycle global warming impact of hydrogen transport through pipelines from Africa to Germany

    Get PDF
    Various hydrogen pipeline structures for the export of hydrogen from Africa to Germany are analyzed by life cycle analysis (LCA) in order to determine the global warming potential (GWP) of the production and transportation of 1 kg of hydrogen. This analysis was motivated by the fact that a hydrogen pipeline infrastructure can be built cost-effectively by partially using existing natural gas pipelines. However, little is known about its possible environmental impact. In this paper, the LCA method is used to compare different import options, including possible changes to future supply chains. Three supply locations - Morocco, Senegal, and Nigeria - are compared with each other and evaluated using Germany's domestic hydrogen supply as a reference. Hydrogen transport via a pipeline from Morocco shows emissions of 0.07-0.11 kg CO2-eq per kg H2, and hydrogen transport from Nigeria causes emissions of 0.27-0.38 kg CO2-eq per kg H2. These figures are highly dependent on the flow rate of hydrogen, the GWP of PV electricity used to power the hydrogen compressors along the way, and compression efficiency. However, the GWP due to pipeline transport is negligible compared to the emissions caused by PV electrolysis. The total emissions of the African supply chain amount to 1.9-2.5 kg CO2-eq per kg H2. From a sensitivity analysis, it can be concluded that, by using identical PV panels, the GWP of German domestic hydrogen production (3.0-3.1 kg CO2-eq per kg H2) still has a higher GWP than hydrogen produced in Africa and imported through pipeline supply chains.</p

    Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness

    Get PDF
    Understanding the fill factor in organic solar cells remains challenging due to its complex dependence on a multitude of parameters. By means of drift-diffusion simulations, we thoroughly analyze the fill factor of such low-mobility systems and demonstrate its dependence on a collection coefficient defined in this work. We systematically discuss the effect of different recombination mechanisms, space-charge regions, and contact properties. Based on these findings, we are able to interpret the thickness dependence of the fill factor for different experimental studies from the literature. The presented model provides a facile method to extract the photoactive layer’s electronic quality which is of particular importance for the fill factor. We illustrate that over the past 15 years, the electronic quality has not been continuously improved, although organic solar-cell efficiencies increased steadily over the same period of time. Only recent reports show the synthesis of polymers for semiconducting films of high electronic quality that are able to produce new efficiency records

    Field-dependent exciton dissociation in organic heterojunction solar cells

    Get PDF
    In organic heterojunction solar cells, the generation of free charge carriers takes place in a multistep process which involves charge transfer (CT) states, that is, bound electron-hole pairs at the interface between donor and acceptor molecules. Past efforts to model the CT-state dissociation during solar cell operation were not able to consistently reproduce the experimentally observed field and temperature dependence. This discrepancy between model and experiment was partly due to the field-dependent free charge carrier collection process, which plays an important role in the widely used bulk heterojunction cell configuration and superimposes a possible field-dependent charge carrier generation process. In order to distinguish between generation and collection of free charge carriers, we propose the planar heterojunction cell configuration as a model system to study the field-dependent charge carrier generation process in organic heterojunction solar cells. We apply this model system to check current CT-state dissociation models against experimental data. Although the models can quantitatively account for the photocurrent's dependence on the applied voltage and the device thickness, they fail to account for the virtually negligible temperature dependence of the field-dependent charge-generation process. This discrepancy is traced back to a common feature of the models: an Arrhenius-like temperature dependence, distinctive of all processes involving a thermally activated jump over an energy barrier. As a solution to the problem, we introduce an exciton dissociation model based on a field-dependent tunnel process and demonstrate its consistency with the experimental observations. Our results indicate that the current microscopic picture of the charge-generation process in organic heterojunction solar cells being limited by the CT-state dissociation process needs to be reconsidered

    A direct measure of positive feedback loop-gain due to reverse bias damage in thin-film solar cells using lock-in thermography

    Get PDF
    In this work, we present a method to study thermal runaway effects in thin-film solar cells. Partial shading of solar cells often leads to permanent damage to shaded cells and degrades the performance of solar modules over time. Under partial shading, the shaded cells may experience a reverse bias junction breakdown. In large-area devices such as solar cells, this junction breakdown tends to take place very locally, thus leading to very local heating and so-called “hot-spots”. Previously, it was shown that a positive feedback effect exists in Cu(In,Ga)Se2 (CIGS) thin-film solar cells, where a highly localized power dissipation is amplified, which may lead to an unstable thermal runaway process. Furthermore, we introduced a novel characterization technique, laser induced Hot-Spot Lock-In Thermography (HS-LIT), which visualizes the positive feedback effect. In this paper, we present a modified HS-LIT technique that allows us to quantify directly a loop-gain for hot-spot formation. By quantifying the loop-gain we obtain a direct measure of how unstable a local hot-spot is, which allows the non-destructive study of hot-spot formation under various conditions and in various cells and cell types. We discuss the modified HS-LIT setup for the direct measurement of the loop-gain. Furthermore, we demonstrate the new method by measuring the loop-gain of the thermal runaway effect in a CIGS solar cell as a function of reverse bias voltage
    corecore