13 research outputs found

    Bright Opportunities for Atmospheric Characterization of Small Planets: Masses and Radii of K2-3 b, c, and d and GJ3470 b from Radial Velocity Measurements and Spitzer Transits

    Full text link
    We report improved masses, radii, and densities for four planets in two bright M-dwarf systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Supplementing K2 photometry with follow-up Spitzer transit observations refined the transit ephemerides of K2-3 b, c, and d by over a factor of 10. We analyze ground-based photometry from the Evryscope and Fairborn Observatory to determine the characteristic stellar activity timescales for our Gaussian Process fit, including the stellar rotation period and activity region decay timescale. The stellar rotation signals for both stars are evident in the radial velocity data and is included in our fit using a Gaussian process trained on the photometry. We find the masses of K2-3 b, K2-3 c, and GJ3470 b to be 6.48{}-0.93+0.99, 2.14{}-1.04+1.08, and 12.58{}-1.28+1.31 M ⊕, respectively. K2-3 d was not significantly detected and has a 3σ upper limit of 2.80 M ⊕. These two systems are training cases for future TESS systems; due to the low planet densities (ρ < 3.7 g cm-3) and bright host stars (K < 9 mag), they are among the best candidates for transmission spectroscopy in order to characterize the atmospheric compositions of small planets

    Low-cost Access to the Deep, High-cadence Sky: the Argus Optical Array

    Get PDF
    New mass-produced, wide-field, small-aperture telescopes have the potential to revolutionize ground-based astronomy by greatly reducing the cost of collecting area. In this paper, we introduce a new class of large telescope based on these advances: an all-sky, arcsecond-resolution, 1000 telescope array which builds a simultaneously high-cadence and deep survey by observing the entire sky all night. As a concrete example, we describe the Argus Array, a 5 m-class telescope with an all-sky field of view and the ability to reach extremely high cadences using low-noise CMOS detectors. Each 55 GPix Argus exposure covers 20% of the entire sky to m g = 19.6 each minute and m g = 21.9 each hour; a high-speed mode will allow sub-second survey cadences for short times. Deep coadds will reach m g = 23.6 every five nights over 47% of the sky; a larger-aperture array telescope, with an étendue close to the Rubin Observatory, could reach m g = 24.3 in five nights. These arrays can build two-color, million-epoch movies of the sky, enabling sensitive and rapid searches for high-speed transients, fast-radio-burst counterparts, gravitational-wave counterparts, exoplanet microlensing events, occultations by distant solar system bodies, and myriad other phenomena. An array of O(1000) telescopes, however, would be one of the most complex astronomical instruments yet built. Standard arrays with hundreds of tracking mounts entail thousands of moving parts and exposed optics, and maintenance costs would rapidly outpace the mass-produced-hardware cost savings compared to a monolithic large telescope. We discuss how to greatly reduce operations costs by placing all optics in thermally controlled, sealed domes with only a few moving parts. Coupled with careful software scope control and use of existing pipelines, we show that the Argus Array could become the deepest and fastest Northern sky survey, with total costs in the $20M range

    Bright Opportunities for Atmospheric Characterization of Small Planets: Masses and Radii of K2-3 b, c, d and GJ3470 b from Radial Velocity Measurements and Spitzer Transits

    Get PDF
    We report improved masses, radii, and densities for four planets in two bright M-dwarf systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Supplementing K2 photometry with follow-up Spitzer transit observations refined the transit ephemerides of K2-3 b, c, and d by over a factor of 10. We analyze ground-based photometry from the Evryscope and Fairborn Observatory to determine the characteristic stellar activity timescales for our Gaussian Process fit, including the stellar rotation period and activity region decay timescale. The stellar rotation signals for both stars are evident in the radial velocity data and is included in our fit using a Gaussian process trained on the photometry. We find the masses of K2-3 b, K2-3 c, and GJ3470 b to be 6.48^(+0.99)_(-0.93), 2.14^(+1.08)_(-1.04), and 12.58^(+1.31)_(-1.28) M⊕, respectively. K2-3 d was not significantly detected and has a 3σ upper limit of 2.80 M⊕. These two systems are training cases for future TESS systems; due to the low planet densities (ρ < 3.7 g cm^(−3)) and bright host stars (K < 9 mag), they are among the best candidates for transmission spectroscopy in order to characterize the atmospheric compositions of small planets

    Robotilter: An automated lens/CCD alignment system for the Evryscope

    No full text
    Camera lenses are increasingly used in wide-field astronomical surveys due to their high performance, wide field-of-view (FOV) unreachable from traditional telescope optics, and modest cost. The machining and assembly tolerances for commercially available optical systems cause a slight misalignment (tilt) between the lens and CCD, resulting in point spread function (PSF) degradation. We have built an automated alignment system (Robotilters) to solve this challenge, optimizing four degrees of freedom-two tilt axes, a separation axis (the distance between the CCD and lens), and the lens focus (the built-in focus of the lens by turning the lens focusing ring, which moves the optical elements relative to one another) in a compact and low-cost package. The Robotilters remove tilt and optimize focus at the sub-10-μm level, are completely automated, take ≈2 h to run, and remain stable for multiple years once aligned. The Robotilters were built for the Evryscope telescope (a 780-MPix 22-camera array with an 8150-sq. deg FOV and continuous 2-min cadence) designed to detect short-timescale events across extremely large sky areas simultaneously. Variance in quality across the image field, especially the corners and edges compared to the center, is a significant challenge in wide-field astronomical surveys like the Evryscope. The individual star PSFs (which typically extend only a few pixels) are highly susceptible to slight increases in optical aberrations in this situation. The Robotilter solution resulted in a limiting magnitude improvement of 0.5 mag in the center of the image and 1.0 mag in the corners for typical Evryscope cameras, with less distorted and smaller PSFs (half the extent in the corners and edges in many cases). We describe the Robotilter mechanical and software design, camera alignment results, long-term stability, and image improvement. The potential for general use in wide-field astronomical surveys is also explored.This research was supported by the NSF CAREER (Grant No. AST-1555175), NSF/ATI (Grant No. AST-1407589), and the Research Corporation Scialog (Grant Nos. 23782 and 23822). H. C. was supported by the NSF GRF (Grant No. DGE-1144081). O. F. and D. dS. acknowledged the support by the Spanish Ministerio de Economía y Competitividad (MINECO/FEDER, UE) under Grant Nos. AYA2013-47447-C3-1-P, AYA2016-76012-C3-1-P, and MDM-2014-0369 of ICCUB (Unidad de Excelencia ‘María de Maeztu’

    EvryFlare. III. Temperature Evolution and Habitability Impacts of Dozens of Superflares Observed Simultaneously by Evryscope and TESS

    No full text
    Superflares may provide the dominant source of biologically relevant UV radiation to rocky habitable-zone M-dwarf planets (M-Earths), altering planetary atmospheres and conditions for surface life. The combined line and continuum flare emission has usually been approximated by a 9000 K blackbody. If superflares are hotter, then the UV emission may be 10 times higher than predicted from the optical. However, it is unknown for how long M-dwarf superflares reach temperatures above 9000 K. Only a handful of M-dwarf superflares have been recorded with multiwavelength high-cadence observations. We double the total number of events in the literature using simultaneous Evryscope and Transiting Exoplanet Survey Satellite observations to provide the first systematic exploration of the temperature evolution of M-dwarf superflares. We also increase the number of superflaring M dwarfs with published time-resolved blackbody evolution by ∼10×. We measure temperatures at 2 minutes cadence for 42 superflares from 27 K5-M5 dwarfs. We find superflare peak temperatures (defined as the mean of temperatures corresponding to flare FWHM) increase with flare energy and impulse. We find the amount of time flares emit at temperatures above 14,000 K depends on energy. We discover that 43% of the flares emit above 14,000 K, 23% emit above 20,000 K and 5% emit above 30,000 K. The largest and hottest flare briefly reached 42,000 K. Some do not reach 14,000 K. During superflares, we estimate M-Earths orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ∼120 W m-2 and up to 103 W m-2, 100-1000 times the time-averaged X-ray and UV flux from Proxima Cen.WH acknowledges partial funding support of the Proxima Cen data and analysis through the Cycle 26 HST proposal GO 15651. WH, HC, NL, JR, and AG acknowledge funding support by the National Science Foundation CAREER grant 1555175, and the Research Corporation Scialog grants 23782 and 23822. HC is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144081. OF and DdS acknowledge support by the Spanish Ministerio de Econom´ıa y Competitividad (MINECO/FEDER, UE) under grants AYA2013-47447- C3-1-P, AYA2016-76012-C3-1-P, MDM-2014-0369 of ICCUB (Unidad de Excelencia ‘Mar´ıa de Maeztu’). The Evryscope was constructed under National Science Foundation/ATI grant AST-1407589. This paper includes data collected by the TESS mission. Funding for the TESS mission is provided by the NASA Explorer Program. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/ dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research made use of Astropy,5 a communitydeveloped core Python package for Astronomy (Astropy Collaboration et al. 2013; Price-Whelan et al. 2018), and the NumPy, SciPy, and Matplotlib Python modules (van der Walt et al. 2011; Virtanen et al. 2020; Hunter 2007). Facilities: CTIO:Evryscope, TES
    corecore