91 research outputs found
A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array
The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the
10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of
the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov
radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by
charged particle showers generated by neutrino interactions in the ice. The
ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the
full array. During the 2013-14 austral summer, three HRA stations collected
radio data which was wirelessly transmitted off site in nearly real-time. The
performance of these stations is described and a simple analysis to search for
neutrino signals is presented. The analysis employs a set of three cuts that
reject background triggers while preserving 90% of simulated cosmogenic
neutrino triggers. No neutrino candidates are found in the data and a
model-independent 90% confidence level Neyman upper limit is placed on the all
flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The
limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 -
10^9.5 GeV energy bin. Simulations of the performance of the full detector are
also described. The sensitivity of the full ARIANNA experiment is presented and
compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic
Performance of the ARIANNA Hexagonal Radio Array
Installation of the ARIANNA Hexagonal Radio Array (HRA) on the Ross Ice Shelf
of Antarctica has been completed. This detector serves as a pilot program to
the ARIANNA neutrino telescope, which aims to measure the diffuse flux of very
high energy neutrinos by observing the radio pulse generated by
neutrino-induced charged particle showers in the ice. All HRA stations ran
reliably and took data during the entire 2014-2015 austral summer season. A new
radio signal direction reconstruction procedure is described, and is observed
to have a resolution better than a degree. The reconstruction is used in a
preliminary search for potential neutrino candidate events in the data from one
of the newly installed detector stations. Three cuts are used to separate radio
backgrounds from neutrino signals. The cuts are found to filter out all data
recorded by the station during the season while preserving 85.4% of simulated
neutrino events that trigger the station. This efficiency is similar to that
found in analyses of previous HRA data taking seasons.Comment: Proceedings from the 34th ICRC2015, http://icrc2015.nl/ . 8 pages, 6
figure
RICE Limits on the Diffuse Ultra-High Energy Neutrino Flux
We present new limits on ultra-high energy neutrino fluxes above 100 PeV
based on data collected by the Radio Ice Cherenkov Experiment (RICE) at the
South Pole from 1999-2005. We discuss estimation of backgrounds, calibration
and data analysis algorithms (both on-line and off-line), procedures used for
the dedicated neutrino search, and refinements in our Monte Carlo (MC)
simulation, including recent in situ measurements of the complex ice dielectric
constant. An enlarged data set and a more detailed study of hadronic showers
results in a sensitivity improvement of more than one order of magnitude
compared to our previously published results. Examination of the full RICE data
set yields zero acceptable neutrino candidates, resulting in 95%
confidence-level model dependent limits on the flux
(E_\nu)^2(d\phi/dE_\nu)<10^{-6} GeV/(cm^2s~sr}) in the energy range 10^{17}<
E_\nu< 10^{20} eV. The new RICE results rule out the most intense flux model
projections at 95% confidence level.Comment: Submitted to Astropart. Phy
Livetime and sensitivity of the ARIANNA Hexagonal Radio Array
The ARIANNA collaboration completed the installation of the hexagonal radio
array (HRA) in December 2014, serving as a pilot program for a planned high
energy neutrino telescope located about 110 km south of McMurdo Station on the
Ross Ice Shelf near the coast of Antarctica. The goal of ARIANNA is to measure
both diffuse and point fluxes of astrophysical neutrinos at energies in excess
of 1016 eV. Upgraded hardware has been installed during the 2014 deployment
season and stations show a livetime of better than 90% between commissioning
and austral sunset. Though designed to observe radio pulses from neutrino
interactions originating within the ice below each detector, one station was
modified to study the low-frequency environment and signals from above. We
provide evidence that the HRA observed both continuous emission from the Galaxy
and a transient solar burst. Preliminary work on modeling the (weak) Galactic
signal confirm the absolute sensitivity of the HRA detector system.Comment: Proceedings from the 34th ICRC2015, http://icrc2015.nl/, 8 pages, 6
figure
Design and Performance of the ARIANNA Hexagonal Radio Array Systems
We report on the development, installation and operation of the first three
of seven stations deployed at the ARIANNA site's pilot Hexagonal Radio Array in
Antarctica. The primary goal of the ARIANNA project is to observe ultra-high
energy (>100 PeV) cosmogenic neutrino signatures using a large array of
autonomous stations each dispersed 1 km apart on the surface of the Ross Ice
Shelf. Sensing radio emissions of 100 MHz to 1 GHz, each station in the array
contains RF antennas, amplifiers, 1.92 G-sample/s, 850 MHz bandwidth signal
acquisition circuitry, pattern-matching trigger capabilities, an embedded CPU,
32 GB of solid-state data storage, and long-distance wireless and satellite
communications. Power is provided by the sun and LiFePO4 storage batteries, and
the stations consume an average of 7W of power. Operation on solar power has
resulted in >=58% per calendar-year live-time. The station's pattern-trigger
capabilities reduce the trigger rates to a few milli-Hertz with 4-sigma
thresholds while retaining good stability and high efficiency for neutrino
signals. The timing resolution of the station has been found to be 0.049 ps,
RMS, and the angular precision of event reconstructions of signals bounced off
of the sea-ice interface of the Ross Ice Shelf ranged from 0.14 to 0.17
degrees. A new fully-synchronous 2+ G-sample/s, 1.5 GHz bandwidth 4-channel
signal acquisition chip with deeper memory and flexible >600 MHz, <1 mV RMS
sensitivity triggering has been designed and incorporated into a single-board
data acquisition and control system that uses an average of only 1.7W of power.
Along with updated amplifiers, these new systems are expected to be deployed
during the 2014-2015 Austral summer to complete the Hexagonal Radio Array.Comment: 17 Page, 27 Figures, 1 Tabl
Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole
We report on studies of the viability and sensitivity of the Askaryan Radio
Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy
neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at
the South Pole. An initial prototype ARA detector system was installed in
January 2011, and has been operating continuously since then. We report on
studies of the background radio noise levels, the radio clarity of the ice, and
the estimated sensitivity of the planned ARA array given these results, based
on the first five months of operation. Anthropogenic radio interference in the
vicinity of the South Pole currently leads to a few-percent loss of data, but
no overall effect on the background noise levels, which are dominated by the
thermal noise floor of the cold polar ice, and galactic noise at lower
frequencies. We have also successfully detected signals originating from a 2.5
km deep impulse generator at a distance of over 3 km from our prototype
detector, confirming prior estimates of kilometer-scale attenuation lengths for
cold polar ice. These are also the first such measurements for propagation over
such large slant distances in ice. Based on these data, ARA-37, the 200 km^2
array now under construction, will achieve the highest sensitivity of any
planned or existing neutrino detector in the 10^{16}-10^{19} eV energy range.Comment: 25 pages, 37 figures, this version with improved ice attenuation
length analysis; for submission to Astroparticle Physic
Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array
We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray
bursts (GRBs) in the data set collected by the Testbed station of the Askaryan
Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no
events that survive our cuts, which is consistent with 0.12 expected background
events. Using NeuCosmA as a numerical GRB reference emission model, we estimate
upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from
to GeV. This is the first limit on the prompt UHE GRB
neutrino quasi-diffuse flux above GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa
First Constraints on the Ultra-High Energy Neutrino Flux from a Prototype Station of the Askaryan Radio Array
The Askaryan Radio Array (ARA) is an ultra-high energy ( eV) cosmic
neutrino detector in phased construction near the South Pole. ARA searches for
radio Cherenkov emission from particle cascades induced by neutrino
interactions in the ice using radio frequency antennas ( MHz)
deployed at a design depth of 200 m in the Antarctic ice. A prototype ARA
Testbed station was deployed at m depth in the 2010-2011 season and
the first three full ARA stations were deployed in the 2011-2012 and 2012-2013
seasons. We present the first neutrino search with ARA using data taken in 2011
and 2012 with the ARA Testbed and the resulting constraints on the neutrino
flux from eV.Comment: 26 pages, 15 figures. Since first revision, added section on
systematic uncertainties, updated limits and uncertainty band with
improvements to simulation, added appendix describing ray tracing algorithm.
Final revision includes a section on cosmic ray backgrounds. Published in
Astropart. Phys.
- …