4 research outputs found

    A randomised controlled trial evaluating a rehabilitation complex intervention for patients following intensive care discharge: the RECOVER study

    Get PDF
    Introduction: Patients who survive an intensive care unit admission frequently suffer physical and psychological morbidity for many months after discharge. Current rehabilitation pathways are often fragmented and little is known about the optimum method of promoting recovery. Many patients suffer reduced quality of life.Methods and analysis: The authors plan a multicentre randomised parallel group complex intervention trial with concealment of group allocation from outcome assessors. Patients who required more than 48 h of mechanical ventilation and are deemed fit for intensive care unit discharge will be eligible. Patients with primary neurological diagnoses will be excluded. Participants will be randomised into one of the two groups: the intervention group will receive standard ward-based care delivered by the NHS service with additional treatment by a specifically trained generic rehabilitation assistant during ward stay and via telephone contact after hospital discharge and the control group will receive standard ward-based care delivered by the current NHS service. The intervention group will also receive additional information about their critical illness and access to a critical care physician. The total duration of the intervention will be from randomisation to 3 months postrandomisation. The total duration of follow-up will be 12 months from randomisation for both groups. The primary outcome will be the Rivermead Mobility Index at 3 months. Secondary outcomes will include measures of physical and psychological morbidity and function, quality of lifeand survival over a 12-month period. A health economic evaluation will also be undertaken. Groups will be compared in relation to primary and secondary outcomes; quantitative analyses will be supplemented by focus groups with patients, carers and healthcare workers.Ethics and dissemination: Consent will be obtained from patients and relatives according to patient capacity. Data will be analysed accordingto a predefined analysis plan

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore