1,582 research outputs found
Molecular transport junctions: Current from electronic excitations in the leads
Using a model comprising a 2-level bridge connecting free electron reservoirs
we show that coupling of a molecular bridge to electron-hole excitations in the
leads can markedly effect the source-drain current through a molecular
junction.In some cases, e.g. molecules that exhibit strong charge transfer
transitions, the contribution from electron-hole excitations can exceed the
Landauer elastic current and dominate the observed conduction.Comment: 4 pages, 2 figures, submitted to PR
Photoproduction of Long-Lived Holes and Electronic Processes in Intrinsic Electric Fields Seen through Photoinduced Absorption and Dichroism in Ca_3Ga_{2-x}Mn_xGe_3O_{12} Garnets
Long-lived photoinduced absorption and dichroism in the
Ca_3Ga_{2-x}Mn_xGe_3O_{12} garnets with x < 0.06 were examined versus
temperature and pumping intensity. Unusual features of the kinetics of
photoinduced phenomena are indicative of the underlying electronic processes.
The comparison with the case of Ca_3Mn_2Ge_3O_{12}, explored earlier by the
authors, permits one to finally establish the main common mechanisms of
photoinduced absorption and dichroism caused by random electric fields of
photoproduced charges (hole polarons). The rate of their diffusion and
relaxation through recombination is strongly influenced by the same fields,
whose large statistical straggling is responsible for a broad continuous set of
relaxation components (observed in the relaxation time range from 1 to about
1000 min). For Ca_3Ga_{2-x}Mn_xGe_3O_{12}, the time and temperature dependences
of photoinduced absorption and dichroism bear a strong imprint of structure
imperfection increasing with x.Comment: 20 pages, 10 figure
Recommended from our members
Isoflurane Anesthesia Initiated at the Onset of Reperfusion Attenuates Oxidative and Hypoxic-Ischemic Brain Injury
This study demonstrates that in mice subjected to hypoxia-ischemia (HI) brain injury isoflurane anesthesia initiated upon reperfusion limits a release of mitochondrial oxidative radicals by inhibiting a recovery of complex-I dependent mitochondrial respiration. This significantly attenuates an oxidative stress and reduces the extent of HI brain injury. Neonatal mice were subjected to HI, and at the initiation of reperfusion were exposed to isoflurane with or without mechanical ventilation. At the end of HI and isoflurane exposure cerebral mitochondrial respiration, Hâ‚‚Oâ‚‚ emission rates were measured followed by an assessment of cerebral oxidative damage and infarct volumes. At 8 weeks after HI navigational memory and brain atrophy were assessed. In vitro, direct effect of isoflurane on mitochondrial Hâ‚‚Oâ‚‚ emission was compared to that of complex-I inhibitor, rotenone. Compared to controls, 15 minutes of isoflurane anesthesia inhibited recovery of the compex I-dependent mitochondrial respiration and decreased Hâ‚‚Oâ‚‚ production in mitochondria supported with succinate. This was associated with reduced oxidative brain injury, superior navigational memory and decreased cerebral atrophy compared to the vehicle-treated HI-mice. Extended isoflurane anesthesia was associated with sluggish recovery of cerebral blood flow (CBF) and the neuroprotection was lost. However, when isoflurane anesthesia was supported with mechanical ventilation the CBF recovery improved, the event associated with further reduction of infarct volume compared to HI-mice exposed to isoflurane without respiratory support. Thus, in neonatal mice brief isoflurane anesthesia initiated at the onset of reperfusion limits mitochondrial release of oxidative radicals and attenuates an oxidative stress. This novel mechanism contributes to neuroprotective action of isoflurane. The use of mechanical ventilation during isoflurane anesthesia counterbalances negative effect of isoflurane anesthesia on recovery of cerebral circulation which potentiates protection against reperfusion injury
In-plane optical response of Bi2Sr2CuO6
We report on infrared reflectivity measurements of the -plane response of
superconducting BiSrCuO single crystals. The frequency dependent
conductivity has a maximum near 700 cm at room temperature, which shifts
to lower frequency and merges with a Drude-peak below 100 K. We attribute the
unusual behaviour of the mid-infrared conductivity to low frequency transitions
between electronic bands of mainly BiO character near the point.
The linear temperature dependence of the low-frequency resistivity can be
followed down to approximately 40 K where it saturates.Comment: Revtex, 4 pages, 4 postscript figures, Phys. Rev. B, in pres
Effects Of Length, Complexity, And Grammatical Correctness On Stuttering In Spanish-Speaking Preschool Children
Purpose: To explore the effects of utterance length, syntactic complexity, and grammatical correctness on stuttering in the spontaneous speech of young, monolingual Spanish-speaking children. Method: Spontaneous speech samples of 11 monolingual Spanish-speaking children who stuttered, ages 35 to 70 months, were examined. Mean number of syllables, total number of clauses, utterance complexity (i.e., containing no clauses, simple clauses, or subordinate and/or conjoined clauses), and grammatical correctness (i.e., the presence or absence of morphological and syntactical errors) in stuttered and fluent utterances were compared. Results: Findings revealed that stuttered utterances in Spanish tended to be longer and more often grammatically incorrect, and contain more clauses, including more subordinate and/or conjoined clauses. However, when controlling for the interrelatedness of syllable number and clause number and complexity, only utterance length and grammatical incorrectness were significant predictors of stuttering in the spontaneous speech of these Spanish-speaking children. Use of complex utterances did not appear to contribute to the prediction of stuttering when controlling for utterance length. Conclusions: Results from the present study were consistent with many earlier reports of English-speaking children. Both length and grammatical factors appear to affect stuttering in Spanish-speaking children. Grammatical errors, however, served as the greatest predictor of stuttering.Communication Sciences and Disorder
Cooperative effects in nuclear excitation with coherent x-ray light
The interaction between super-intense coherent x-ray light and nuclei is
studied theoretically. One of the main difficulties with driving nuclear
transitions arises from the very narrow nuclear excited state widths which
limit the coupling between laser and nuclei. In the context of direct
laser-nucleus interaction, we consider the nuclear width broadening that occurs
when in solid targets, the excitation caused by a single photon is shared by a
large number of nuclei, forming a collective excited state. Our results show
that for certain isotopes, cooperative effects may lead to an enhancement of
the nuclear excited state population by almost two orders of magnitude.
Additionally, an update of previous estimates for nuclear excited state
population and signal photons taking into account the experimental advances of
the x-ray coherent light sources is given. The presented values are an
improvement by orders of magnitude and are encouraging for the future prospects
of nuclear quantum optics.Comment: 22 pages, 4 figures, 5 tables; updated to the published version, one
additional results tabl
On the low-temperature lattice thermal transport in nanowires
We propose a theory of low temperature thermal transport in nano-wires in the
regime where a competition between phonon and flexural modes governs the
relaxation processes. Starting with the standard kinetic equations for two
different types of quasiparticles we derive a general expression for the
coefficient of thermal conductivity. The underlying physics of thermal
conductance is completely determined by the corresponding relaxation times,
which can be calculated directly for any dispersion of quasiparticles depending
on the size of a system. We show that if the considered relaxation mechanism is
dominant, then at small wire diameters the temperature dependence of thermal
conductivity experiences a crossover from to -dependence.
Quantitative analysis shows reasonable agreement with resent experimental
results.Comment: 12 pages, 3 eps figure
Equidistribution of Heegner Points and Ternary Quadratic Forms
We prove new equidistribution results for Galois orbits of Heegner points
with respect to reduction maps at inert primes. The arguments are based on two
different techniques: primitive representations of integers by quadratic forms
and distribution relations for Heegner points. Our results generalize one of
the equidistribution theorems established by Cornut and Vatsal in the sense
that we allow both the fundamental discriminant and the conductor to grow.
Moreover, for fixed fundamental discriminant and variable conductor, we deduce
an effective surjectivity theorem for the reduction map from Heegner points to
supersingular points at a fixed inert prime. Our results are applicable to the
setting considered by Kolyvagin in the construction of the Heegner points Euler
system
Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit
We present a scaling analysis of electronic and transport properties of
metal-semiconducting carbon nanotube interfaces as a function of the nanotube
length within the coherent transport regime, which takes fully into account
atomic-scale electronic structure and three-dimensional electrostatics of the
metal-nanotube interface using a real-space Green's function based
self-consistent tight-binding theory. As the first example, we examine devices
formed by attaching finite-size single-wall carbon nanotubes (SWNT) to both
high- and low- work function metallic electrodes through the dangling bonds at
the end. We analyze the nature of Schottky barrier formation at the
metal-nanotube interface by examining the electrostatics, the band lineup and
the conductance of the metal-SWNT molecule-metal junction as a function of the
SWNT molecule length and metal-SWNT coupling strength. We show that the
confined cylindrical geometry and the atomistic nature of electronic processes
across the metal-SWNT interface leads to a different physical picture of band
alignment from that of the planar metal-semiconductor interface. We analyze the
temperature and length dependence of the conductance of the SWNT junctions,
which shows a transition from tunneling- to thermal activation-dominated
transport with increasing nanotube length. The temperature dependence of the
conductance is much weaker than that of the planar metal-semiconductor
interface due to the finite number of conduction channels within the SWNT
junctions. We find that the current-voltage characteristics of the metal-SWNT
molecule-metal junctions are sensitive to models of the potential response to
the applied source/drain bias voltages.Comment: Minor revision to appear in Phys. Rev. B. Color figures available in
the online PRB version or upon request to: [email protected]
- …