3,852 research outputs found
Imaging of fuel mixture fraction oscillations in a driven system using acetone PLIF
Measurements of fuel mixture fraction are made for a jet flame in an acoustic chamber. Acoustic forcing creates a
spatially-uniform, temporally-varying pressure field which results in oscillatory behavior in the flame . Forcing is at 22,27, 32, 37, and 55 Hz. To asses the oscillatory behavior, previous work included chemiluminescence, OH PUF, nitric oxide PUF imaging, and fuel mixture fraction measurements by infrared laser absorption. While these results illuminated what was happening to the flame chemistry, they did not provide a complete explanation as to why these things were happening. In this work, the fuel mixture fraction is measured through PUF of acetone, which is introduced into the fuel stream as a marker. This technique enables a high degree of spatial resolution of fuel/air mixture value. Both non-reacting and reacting cases were measured and comparisons are drawn with the results from the previous work. It is found that structure in the mixture fraction oscillations is a major contributor to the magnitude of the flame oscillations
An experimental study of coupling between combustor pressure, fuel/air mixing, and the flame
Fuel-air mixing behavior under the influence of imposed acoustic oscillations has been studied by investigating the response of the fuel mixture fraction field. The distribution of local fuel mixture fraction inside the mixing zone, which is expected to evolve into the local equivalence ratio in the flame zone, is closely coupled to unstable and oscillatory flame behavior. The Experiment was performed with an aerodynamically-stabilized non-premixed burner. In this study, acoustic oscillations were imposed at 22, 27, 32, 37, and 55Hz. Phase-resolved acetone PLIF was used to image the flow field of both isothermal and reacting flow cases and this data along with the derived quantities of temporal and spatial unmixedness were employed for analysis. The behavior of the unmixedness factor is compared with the previous measurements of oscillations in the flame zone. This comparison shows that local oscillations (of order millimeters or smaller) in fuel/air mixing are closely related to the oscillatory behavior of the flame. For each driving frequency, the mixture fraction oscillates at that frequency but with a slight phase difference between it and the pressure field/flame intensity, indicating that the fuel mixture fraction oscillation are likely the major reason for oscillatory behaviors of this category of flames and combustor geometry
Phase resolved PLIF and chemiluminescence for measuring combustion dynamics
Transient behavior of combustion systems has long been a subject of both fundamental and practical concerns. Extreme cases of very rapid changes include the ignition of reacting mixtures and detonation. At the other extreme is a wide range of quasi-steady changes of behavior, for example adjustments of the operating point of a combustion chamber. Between the limiting cases of 'infinitely fast' and 'infinitesimally slow' lie important fundamental problems of time-dependent behavior and a wide array
of practical applications. Among the latter are combustion instabilities and their active control, a primary motivation for the work reported in this paper. Owing to the
complicated chemistry, chemical kinetics and flow dynamics of actual combustion systems, numerical simulations of their behavior remains in a relatively primitive state.
Even as that situation continually improves, it is an essential part of the field that methods of measuring true dynamical behavior be developed to provide results having both fine spatial resolution and accuracy in time. This paper is a progress report of recent research
carried out in the Jet Propulsion Center of the California Institute of Technology
AFM pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation
The thermodynamic driving force in the self-assembly of the secondary
structure of a class of donor-acceptor oligorotaxanes is elucidated by means of
molecular dynamics simulations of equilibrium isometric single-molecule force
spectroscopy AFM experiments. The oligorotaxanes consist of
cyclobis(paraquat-\emph{p}-phenylene) rings threaded onto an oligomer of
1,5-dioxynaphthalenes linked by polyethers. The simulations are performed in a
high dielectric medium using MM3 as the force field. The resulting force vs.
extension isotherms show a mechanically unstable region in which the molecule
unfolds and, for selected extensions, blinks in the force measurements between
a high-force and a low-force regime. From the force vs. extension data the
molecular potential of mean force is reconstructed using the weighted histogram
analysis method and decomposed into energetic and entropic contributions. The
simulations indicate that the folding of the oligorotaxanes is energetically
favored but entropically penalized, with the energetic contributions overcoming
the entropy penalty and effectively driving the self-assembly. In addition, an
analogy between the single-molecule folding/unfolding events driven by the AFM
tip and the thermodynamic theory of first-order phase transitions is discussed
and general conditions, on the molecule and the cantilever, for the emergence
of mechanical instabilities and blinks in the force measurements in equilibrium
isometric pulling experiments are presented. In particular, it is shown that
the mechanical stability properties observed during the extension are
intimately related to the fluctuations in the force measurements.Comment: 42 pages, 17 figures, accepted to the Journal of Chemical Physic
Electron transport in semiconducting carbon nanotubes with hetero-metallic contacts
We present an atomistic self-consistent study of the electronic and transport
properties of semiconducting carbon nanotube in contact with metal electrodes
of different work functions, which shows simultaneous electron and hole doping
inside the nanotube junction through contact-induced charge transfer. We find
that the band lineup in the nanotube bulk region is determined by the effective
work function difference between the nanotube channel and source/drain
electrodes, while electron transmission through the SWNT junction is affected
by the local band structure modulation at the two metal-nanotube interfaces,
leading to an effective decoupling of interface and bulk effects in electron
transport through nanotube junction devices.Comment: Higher quality figures available at http://www.albany.edu/~yx15212
Chiral molecular films as electron polarizers and polarization modulators
Recent experiments on electron scattering through molecular films have shown
that chiral molecules can be efficient sources of polarized electrons even in
the absence of heavy nuclei as source of a strong spin-orbit interaction. We
show that self-assembled monolayers (SAMs) of chiral molecules are strong
electron polarizers due to the high density effect of the monolayers and
explicitly compute the scattering amplitude off a helical molecular model of
carbon atoms. Longitudinal polarization is shown to be the signature of chiral
scattering. For elastic scattering, we find that at least double scattering
events must take place for longitudinal polarization to arise. We predict
energy windows for strong polarization, determined by the energy dependences of
spin-orbit strength and multiple scattering probability. An incoherent
mechanism for polarization amplification is proposed, that increases the
polarization linearly with the number of helix turns, consistent with recent
experiments on DNA SAMs.Comment: 5 Pages, 4 figure
Just war and military morale: a brief reflection on the correlation between the legality of war and the moral repercussions for members of US and UK forces arising from the questionable legality of the campaign Iraqi Freedom of March 2003
Does it matter to a member of the military whether the military
campaign in which he is taking part is lawful or not? Despite the observation that
the crime of aggression (post Kampala 2010) constitutes a ‘leadership crime par
excellence,’ which limits any (future) criminal responsibility accordingly, the
legality or illegality of any military action under international law can create moral
implications for the common foot soldier and mid-level officer and also have a
tangible impact on the national legal frameworks under which these forces operate.
This short article uses the example of Operation Iraqi Freedom (2003) to discuss the repercussions of a—most likely—illegal military campaign for individual members
of democratic armed forces before the background of the present discussion of NATO led action in Libya
Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology
This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation
- …