44 research outputs found

    RNAi-mediated gene knockdown by microinjection in the model entomopathogenic nematode Heterorhabditis bacteriophora.

    Get PDF
    BACKGROUND: Parasitic nematodes threaten the health of humans and livestock and cause a major financial and socioeconomic burden to modern society. Given the widespread distribution of diseases caused by parasitic nematodes there is an urgent need to develop tools that will elucidate the genetic complexity of host-parasite interactions. Heterorhabditis bacteriophora is a parasitic nematode that allows simultaneous monitoring of nematode infection processes and host immune function, and offers potential as a tractable model for parasitic nematode infections. However, molecular tools to investigate these processes are required prior to its widespread acceptance as a robust model organism. In this paper we describe microinjection in adult H. bacteriophora as a suitable means of dsRNA delivery to knockdown gene transcripts. METHODS: RNA interference was used to knockdown four genes by injecting dsRNA directly into the gonad of adult hermaphrodite nematodes. RNAi phenotypes were scored in the F1 progeny on the fifth day post-injection, and knockdown of gene-specific transcripts was quantified with real-time quantitative RT-PCR (qRT-PCR). RESULTS: RNAi injection in adult hermaphrodites significantly decreased the level of target transcripts to varying degrees when compared with controls. The genes targeted by RNAi via injection included cct-2, nol-5, dpy-7, and dpy-13. In each case, RNAi knockdown was confirmed phenotypically by examining the progeny of injected animals, and also confirmed at the transcriptional level by real-time qRT-PCR. CONCLUSIONS: Here we describe for the first time the successful use of microinjection to knockdown gene transcripts in H. bacteriophora. This technique can be used widely to study the molecular basis of parasitism

    NHR-49 Helps Germline-Less Worms Chew the Fat

    Get PDF
    In C. elegans, removal of the germline extends lifespan significantly. We demonstrate that the nuclear hormone receptor, NHR-49, enables the response to this physiological change by increasing the expression of genes involved in mitochondrial β-oxidation and fatty-acid desaturation. The coordinated augmentation of these processes is critical for germline-less animals to maintain their lipid stores and to sustain de novo fat synthesis during adulthood. Following germline ablation, NHR-49 is up-regulated in somatic cells by the conserved longevity determinants DAF-16/FOXO and TCER-1/TCERG1. Accordingly, NHR-49 overexpression in fertile animals extends their lifespan modestly. In fertile adults, nhr-49 expression is DAF-16/FOXO and TCER-1/TCERG1 independent although its depletion causes age-related lipid abnormalities. Our data provide molecular insights into how reproductive stimuli are integrated into global metabolic changes to alter the lifespan of the animal. They suggest that NHR-49 may facilitate the adaptation to loss of reproductive potential through synchronized enhancement of fatty-acid oxidation and desaturation, thus breaking down some fats ordained for reproduction and orchestrating a lipid profile conducive for somatic maintenance and longevity

    Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations.

    No full text
    Previously, we identified a group of nuclear hormone receptors (NHRs) that promote longevity in the nematode Caenorhabditis elegans following germline-stem cell (GSC) loss. This group included NHR-49, the worm protein that performs functions similar to vertebrate PPARα, a key regulator of lipid metabolism. We showed that NHR-49/PPARα enhances mitochondrial β-oxidation and fatty acid desaturation upon germline removal, and through the coordinated enhancement of these processes allows the animal to retain lipid homeostasis and undergo lifespan extension. NHR-49/PPARα expression is elevated in GSC-ablated animals, in part, by DAF-16/FOXO3A and TCER-1/TCERG1, two other conserved, pro-longevity transcriptional regulators that are essential for germline-less longevity. In exploring the roles of the other pro-longevity NHRs, we discovered that one of them, NHR-71/HNF4, physically interacted with NHR-49/PPARα. NHR-71/HNF4 did not have a broad impact on the expression of β-oxidation and desaturation targets of NHR-49/PPARα. But, both NHR-49/PPARα and NHR-71/HNF4 were essential for the increased expression of DAF-16/FOXO3A- and TCER-1/TCERG1-downstream target genes. In addition, nhr-49 inactivation caused a striking membrane localization of KRI-1, the only known common upstream regulator of DAF-16/FOXO3A and TCER-1/TCERG1, suggesting that it may operate in a positive feedback loop to potentiate the activity of this pathway. These data underscore how selective interactions between NHRs that function as nodes in metabolic networks, confer functional specificity in response to different physiological stimuli

    The Many Landscapes of Recombination in <em>Drosophila melanogaster</em>

    Get PDF
    <div><p>Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in <em>Drosophila melanogaster</em> by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should be included in a new generation of population genetic models of the interaction between selection and linkage.</p> </div

    Relationship between CO rate (c) and nucleotide polymorphism (Ï€).

    No full text
    <p>π indicates pairwise nucleotide variation (/bp) at noncoding sites (intergenic and introns). π values for X-linked are adjusted to be comparable to autosomal regions. Based on 100-kb adjacent windows, there is a significant positive correlation between <i>c</i> and π (Spearman's <i>R</i> = 0.560, <i>P</i><1×10<sup>−12</sup>) also detected after removing telomeric/centromeric regions (<i>R</i> = 0.497, <i>P</i><1×10<sup>−12</sup>).</p

    Crossing over rate variation along chromosome arms in <i>D. melanogaster</i>.

    No full text
    <p>Rate of crossing over (<i>c</i>) based on data from all crosses and indicated in centimorgans (cM) per megabase (Mb) per female meiosis (red line). <i>c</i> is shown along chromosomes for 100-kb windows and a movement between adjacent windows of 50 kb. Blue lines indicate 90% confidence interval for <i>c</i> at each window.</p
    corecore