9 research outputs found

    Competing particle–hole excitations in ³⁰Na: Constraining state-of-the-art effective interactions

    Get PDF
    The odd–odd nucleus ³⁰Na is studied via a one-proton, one-proton–one-neutron and one-neutron removal reaction using an intermediate-energy ³¹Mg, ³²Mg and ³¹Na radioactive ion beam, respectively. Combining high-resolution γ-ray spectroscopy with the selectivity of the three reaction mechanisms, we are able to distinguish multiple particle–hole configurations. Negative-parity states in ³⁰Na are observed for the first time, providing an important measure of the excitation of the 1p1h/3p3h configuration and hence the sd–pf shell gap. The extracted band structures and level energies serve as invaluable input for the theoretical refinement of the effective interactions used in this region

    Neutron capture on short-lived nuclei via the surrogate (d,p

    No full text
    Rapid r-process nucleosynthesis is responsible for the creation of about half of the elements heavier than iron. Neutron capture on shortlived nuclei in cold processes or during freeze out from hot processes can have a significant impact on the final observed r-process abundances. We are validating the (d,pγ) reaction as a surrogate for neutron capture with measurements on 95Mo targets and a focus on discrete transitions. The experimental results have been analyzed within the Hauser-Feshbach approach with non-elastic breakup of the deuteron providing a neutron to be captured. Preliminary results support the (d,pγ) reaction as a valid surrogate for neutron capture. We are poised to measure the (d,pγ) reaction in inverse kinematics with unstable beams following the development of the experimental techniques

    Neutron capture on short-lived nuclei via the surrogate (d,pγ) reaction

    No full text
    Rapid r-process nucleosynthesis is responsible for the creation of about half of the elements heavier than iron. Neutron capture on shortlived nuclei in cold processes or during freeze out from hot processes can have a significant impact on the final observed r-process abundances. We are validating the (d,pγ) reaction as a surrogate for neutron capture with measurements on 95Mo targets and a focus on discrete transitions. The experimental results have been analyzed within the Hauser-Feshbach approach with non-elastic breakup of the deuteron providing a neutron to be captured. Preliminary results support the (d,pγ) reaction as a valid surrogate for neutron capture. We are poised to measure the (d,pγ) reaction in inverse kinematics with unstable beams following the development of the experimental techniques

    Informing neutron capture nucleosynthesis on short-lived nuclei with (d,p) reactions

    No full text
    Neutron capture on unstable nuclei is important in understanding abundances in r-process nucleosynthesis. Previously, the non-elastic breakup of the deuteron in the (d,p) reaction has been shown to provide a neutron that can be captured by the nucleus and the gamma-ray decay of the subsequent compound nucleus can be modelled to predict the gamma-ray decay of the compound nucleus in the (n,γ) reaction. Preliminary results from the 95Mo(d,pγ) reaction in normal kinematics support the (d,pγ) reaction as a valid surrogate for neutron capture. The techniques to measure the (d,pγ) reaction in inverse kinematics have been developed

    Informing neutron capture nucleosynthesis on short-lived nuclei with (d,p) reactions

    No full text
    Neutron capture on unstable nuclei is important in understanding abundances in r-process nucleosynthesis. Previously, the non-elastic breakup of the deuteron in the (d,p) reaction has been shown to provide a neutron that can be captured by the nucleus and the gamma-ray decay of the subsequent compound nucleus can be modelled to predict the gamma-ray decay of the compound nucleus in the (n,γ) reaction. Preliminary results from the 95Mo(d,pγ) reaction in normal kinematics support the (d,pγ) reaction as a valid surrogate for neutron capture. The techniques to measure the (d,pγ) reaction in inverse kinematics have been developed

    Artificial Intelligence Crime: An Interdisciplinary Analysis of Foreseeable Threats and Solutions

    No full text

    Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries

    No full text
    corecore