326 research outputs found

    Transfer Learning for Multi-language Twitter Election Classification

    Get PDF
    Both politicians and citizens are increasingly embracing social media as a means to disseminate information and comment on various topics, particularly during significant political events, such as elections. Such commentary during elections is also of interest to social scientists and pollsters. To facilitate the study of social media during elections, there is a need to automatically identify posts that are topically related to those elections. However, current studies have focused on elections within English-speaking regions, and hence the resultant election content classifiers are only applicable for elections in countries where the predominant language is English. On the other hand, as social media is becoming more prevalent worldwide, there is an increasing need for election classifiers that can be generalised across different languages, without building a training dataset for each election. In this paper, based upon transfer learning, we study the development of effective and reusable election classifiers for use on social media across multiple languages. We combine transfer learning with different classifiers such as Support Vector Machines (SVM) and state-of-the-art Convolutional Neural Networks (CNN), which make use of word embedding representations for each social media post. We generalise the learned classifier models for cross-language classification by using a linear translation approach to map the word embedding vectors from one language into another. Experiments conducted over two election datasets in different languages show that without using any training data from the target language, linear translations outperform a classical transfer learning approach, namely Transfer Component Analysis (TCA), by 80% in recall and 25% in F1 measure

    Long-time behaviour of discretizations of the simple pendulum equation

    Full text link
    We compare the performance of several discretizations of the simple pendulum equation in a series of numerical experiments. The stress is put on the long-time behaviour. We choose for the comparison numerical schemes which preserve the qualitative features of solutions (like periodicity). All these schemes are either symplectic maps or integrable (preserving the energy integral) maps, or both. We describe and explain systematic errors (produced by any method) in numerical computations of the period and the amplitude of oscillations. We propose a new numerical scheme which is a modification of the discrete gradient method. This discretization preserves (almost exactly) the period of small oscillations for any time step.Comment: 41 pages, including 18 figures and 4 table

    Reconciling long-term cultural diversity and short-term collective social behavior

    Get PDF
    An outstanding open problem is whether collective social phenomena occurring over short timescales can systematically reduce cultural heterogeneity in the long run, and whether offline and online human interactions contribute differently to the process. Theoretical models suggest that short-term collective behavior and long-term cultural diversity are mutually excluding, since they require very different levels of social influence. The latter jointly depends on two factors: the topology of the underlying social network and the overlap between individuals in multidimensional cultural space. However, while the empirical properties of social networks are well understood, little is known about the large-scale organization of real societies in cultural space, so that random input specifications are necessarily used in models. Here we use a large dataset to perform a high-dimensional analysis of the scientific beliefs of thousands of Europeans. We find that inter-opinion correlations determine a nontrivial ultrametric hierarchy of individuals in cultural space, a result unaccessible to one-dimensional analyses and in striking contrast with random assumptions. When empirical data are used as inputs in models, we find that ultrametricity has strong and counterintuitive effects, especially in the extreme case of long-range online-like interactions bypassing social ties. On short time-scales, it strongly facilitates a symmetry-breaking phase transition triggering coordinated social behavior. On long time-scales, it severely suppresses cultural convergence by restricting it within disjoint groups. We therefore find that, remarkably, the empirical distribution of individuals in cultural space appears to optimize the coexistence of short-term collective behavior and long-term cultural diversity, which can be realized simultaneously for the same moderate level of mutual influence

    Beating the news using social media: the case study of American Idol

    Get PDF
    We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon that each week draws millions of votes in the USA. This event can be considered as basic test in a simplified environment to assess the predictive power of Twitter signals. We provide evidence that Twitter activity during the time span defined by the TV show airing and the voting period following it correlates with the contestants ranking and allows the anticipation of the voting outcome. Twitter data from the show and the voting period of the season finale have been analyzed to attempt the winner prediction ahead of the airing of the official result. We also show that the fraction of tweets that contain geolocation information allows us to map the fanbase of each contestant, both within the US and abroad, showing that strong regional polarizations occur. The geolocalized data are crucial for the correct prediction of the final outcome of the show, pointing out the importance of considering information beyond the aggregated Twitter signal. Although American Idol voting is just a minimal and simplified version of complex societal phenomena such as political elections, this work shows that the volume of information available in online systems permits the real time gathering of quantitative indicators that may be able to anticipate the future unfolding of opinion formation events

    Persistence and Uncertainty in the Academic Career

    Get PDF
    Understanding how institutional changes within academia may affect the overall potential of science requires a better quantitative representation of how careers evolve over time. Since knowledge spillovers, cumulative advantage, competition, and collaboration are distinctive features of the academic profession, both the employment relationship and the procedures for assigning recognition and allocating funding should be designed to account for these factors. We study the annual production n_{i}(t) of a given scientist i by analyzing longitudinal career data for 200 leading scientists and 100 assistant professors from the physics community. We compare our results with 21,156 sports careers. Our empirical analysis of individual productivity dynamics shows that (i) there are increasing returns for the top individuals within the competitive cohort, and that (ii) the distribution of production growth is a leptokurtic "tent-shaped" distribution that is remarkably symmetric. Our methodology is general, and we speculate that similar features appear in other disciplines where academic publication is essential and collaboration is a key feature. We introduce a model of proportional growth which reproduces these two observations, and additionally accounts for the significantly right-skewed distributions of career longevity and achievement in science. Using this theoretical model, we show that short-term contracts can amplify the effects of competition and uncertainty making careers more vulnerable to early termination, not necessarily due to lack of individual talent and persistence, but because of random negative production shocks. We show that fluctuations in scientific production are quantitatively related to a scientist's collaboration radius and team efficiency.Comment: 29 pages total: 8 main manuscript + 4 figs, 21 SI text + fig

    In-beam gamma-ray spectroscopy of 35Mg and 33Na

    Full text link
    Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the "Island of Inversion" around N = 20. The results are discussed in the framework of large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new gamma-ray transition was observed that is suggested to complete the gamma-ray cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder states that are predicted to form a close-to-ideal K = 3/2 rotational band in the strong-coupling limit.Comment: Accepted for publication Phys. Rev. C. March 16, 2011: Replaced figures 3 and 5. We thank Alfredo Poves for pointing out a problem with the two figure
    • …
    corecore