326 research outputs found
Transfer Learning for Multi-language Twitter Election Classification
Both politicians and citizens are increasingly embracing social media as a means to disseminate information and comment on various topics, particularly during significant political events, such as elections. Such commentary during elections is also of interest to social scientists and pollsters. To facilitate the study of social media during elections, there is a need to automatically identify posts that are topically related to those elections. However, current studies have focused on elections within English-speaking regions, and hence the resultant election content classifiers are only applicable for elections in countries where the predominant language is English. On the other hand, as social media is becoming more prevalent worldwide, there is an increasing need for election classifiers that can be generalised across different languages, without building a training dataset for each election. In this paper, based upon transfer learning, we study the development of effective and reusable election classifiers for use on social media across multiple languages. We combine transfer learning with different classifiers such as Support Vector Machines (SVM) and state-of-the-art Convolutional Neural Networks (CNN), which make use of word embedding representations for each social media post. We generalise the learned classifier models for cross-language classification by using a linear translation approach to map the word embedding vectors from one language into another. Experiments conducted over two election datasets in different languages show that without using any training data from the target language, linear translations outperform a classical transfer learning approach, namely Transfer Component Analysis (TCA), by 80% in recall and 25% in F1 measure
Long-time behaviour of discretizations of the simple pendulum equation
We compare the performance of several discretizations of the simple pendulum
equation in a series of numerical experiments. The stress is put on the
long-time behaviour. We choose for the comparison numerical schemes which
preserve the qualitative features of solutions (like periodicity). All these
schemes are either symplectic maps or integrable (preserving the energy
integral) maps, or both. We describe and explain systematic errors (produced by
any method) in numerical computations of the period and the amplitude of
oscillations. We propose a new numerical scheme which is a modification of the
discrete gradient method. This discretization preserves (almost exactly) the
period of small oscillations for any time step.Comment: 41 pages, including 18 figures and 4 table
Reconciling long-term cultural diversity and short-term collective social behavior
An outstanding open problem is whether collective social phenomena occurring
over short timescales can systematically reduce cultural heterogeneity in the
long run, and whether offline and online human interactions contribute
differently to the process. Theoretical models suggest that short-term
collective behavior and long-term cultural diversity are mutually excluding,
since they require very different levels of social influence. The latter
jointly depends on two factors: the topology of the underlying social network
and the overlap between individuals in multidimensional cultural space.
However, while the empirical properties of social networks are well understood,
little is known about the large-scale organization of real societies in
cultural space, so that random input specifications are necessarily used in
models. Here we use a large dataset to perform a high-dimensional analysis of
the scientific beliefs of thousands of Europeans. We find that inter-opinion
correlations determine a nontrivial ultrametric hierarchy of individuals in
cultural space, a result unaccessible to one-dimensional analyses and in
striking contrast with random assumptions. When empirical data are used as
inputs in models, we find that ultrametricity has strong and counterintuitive
effects, especially in the extreme case of long-range online-like interactions
bypassing social ties. On short time-scales, it strongly facilitates a
symmetry-breaking phase transition triggering coordinated social behavior. On
long time-scales, it severely suppresses cultural convergence by restricting it
within disjoint groups. We therefore find that, remarkably, the empirical
distribution of individuals in cultural space appears to optimize the
coexistence of short-term collective behavior and long-term cultural diversity,
which can be realized simultaneously for the same moderate level of mutual
influence
Beating the news using social media: the case study of American Idol
We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon that each week draws millions of votes in the USA. This event can be considered as basic test in a simplified environment to assess the predictive power of Twitter signals. We provide evidence that Twitter activity during the time span defined by the TV show airing and the voting period following it correlates with the contestants ranking and allows the anticipation of the voting outcome. Twitter data from the show and the voting period of the season finale have been analyzed to attempt the winner prediction ahead of the airing of the official result. We also show that the fraction of tweets that contain geolocation information allows us to map the fanbase of each contestant, both within the US and abroad, showing that strong regional polarizations occur. The geolocalized data are crucial for the correct prediction of the final outcome of the show, pointing out the importance of considering information beyond the aggregated Twitter signal. Although American Idol voting is just a minimal and simplified version of complex societal phenomena such as political elections, this work shows that the volume of information available in online systems permits the real time gathering of quantitative indicators that may be able to anticipate the future unfolding of opinion formation events
Persistence and Uncertainty in the Academic Career
Understanding how institutional changes within academia may affect the
overall potential of science requires a better quantitative representation of
how careers evolve over time. Since knowledge spillovers, cumulative advantage,
competition, and collaboration are distinctive features of the academic
profession, both the employment relationship and the procedures for assigning
recognition and allocating funding should be designed to account for these
factors. We study the annual production n_{i}(t) of a given scientist i by
analyzing longitudinal career data for 200 leading scientists and 100 assistant
professors from the physics community. We compare our results with 21,156
sports careers. Our empirical analysis of individual productivity dynamics
shows that (i) there are increasing returns for the top individuals within the
competitive cohort, and that (ii) the distribution of production growth is a
leptokurtic "tent-shaped" distribution that is remarkably symmetric. Our
methodology is general, and we speculate that similar features appear in other
disciplines where academic publication is essential and collaboration is a key
feature. We introduce a model of proportional growth which reproduces these two
observations, and additionally accounts for the significantly right-skewed
distributions of career longevity and achievement in science. Using this
theoretical model, we show that short-term contracts can amplify the effects of
competition and uncertainty making careers more vulnerable to early
termination, not necessarily due to lack of individual talent and persistence,
but because of random negative production shocks. We show that fluctuations in
scientific production are quantitatively related to a scientist's collaboration
radius and team efficiency.Comment: 29 pages total: 8 main manuscript + 4 figs, 21 SI text + fig
In-beam gamma-ray spectroscopy of 35Mg and 33Na
Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated
in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam
energy. We report on the first observation of gamma-ray transitions in 35Mg,
the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the "Island
of Inversion" around N = 20. The results are discussed in the framework of
large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new
gamma-ray transition was observed that is suggested to complete the gamma-ray
cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder
states that are predicted to form a close-to-ideal K = 3/2 rotational band in
the strong-coupling limit.Comment: Accepted for publication Phys. Rev. C. March 16, 2011: Replaced
figures 3 and 5. We thank Alfredo Poves for pointing out a problem with the
two figure
- …