10 research outputs found

    Managing Climatic Risks to Combat Land Degradation and Enhance Food security: Key Information Needs

    Get PDF
    This paper discusses the key information needs to reduce the negative impacts of weather variability and climate change on land degradation and food security, and identifies the opportunities and barriers between the information and services needed. It suggests that vulnerability assessments based on a livelihood concept that includes climate information and key socio-economic variables can overcome the narrow focus of common one-dimensional vulnerability studies. Both current and future climatic risks can be managed better if there is appropriate policy and institutional support together with technological interventions to address the complexities of multiple risks that agriculture has to face. This would require effective partnerships among agencies dealing with meteorological and hydrological services, agricultural research, land degradation and food security issues. In addition a state-of-the-art infrastructure to measure, record, store and disseminate data on weather variables, and access to weather and seasonal climate forecasts at desired spatial and temporal scales would be needed

    The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI–Dynamic Contrast-Enhanced challenge

    No full text
    Purpose: K trans has often been proposed as a quantitative imaging biomarker for diagnosis,prognosis,andtreatmentresponseassessmentforvarioustumors.Noneofthe many software tools for K trans quantification are standardized. The ISMRM OpenScience Initiative for Perfusion Imaging–Dynamic Contrast-Enhanced (OSIPI-DCE)challenge was designed to benchmark methods to better help the efforts to standardize K trans measurement. Methods: A framework was created to evaluate K trans values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants’ K trans values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIPIgold score defined with accuracy, repeatability, and reproducibility components. Results: Across the 10 received submissions, the OSIPIgold score ranged from28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively(0–1=lowest–highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. Conclusions: This study reports results from the OSIPI-DCE challenge and high-lights the high inter-software variability within K trans estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology

    Aplicações da cultura de tecidos em plantas medicinais

    No full text

    Mercury Exposure, Epigenetic Alterations and Brain Tumorigenesis: A Possible Relationship?

    No full text

    Oral Manifestations of Viral Diseases

    No full text
    corecore