5 research outputs found

    Serum chymase levels correlate with severe dengue warning signs and clinical fluid accumulation in hospitalized pediatric patients.

    Get PDF
    Dengue induces a spectrum of severity in humans from the milder dengue fever to severe disease, or dengue hemorrhagic fever (DHF). Chymase is a candidate biomarker that may aid dengue prognosis. This prospective study aimed to identify whether warning signs of severe dengue, including hypovolemia and fluid accumulation, were associated with elevated chymase. Serum chymase levels were quantified prospectively and longitudinally in hospitalized pediatric dengue patients in Sri Lanka. Warning signs were determined based on daily clinical assessments, laboratory tests and ultrasound findings. Chymase was significantly elevated during the acute phase of disease in DHF or Severe dengue, defined by either the 1997 or 2009 WHO diagnosis guidelines, and persisted longer in the most severe patients. Chymase levels were higher in patients with narrow pulse pressure and clinical warning signs such as severe leakage, fluid accumulation, pleural effusion, gall-bladder wall thickening and rapid haematocrit rise concurrent with thrombocytopenia. No association between chymase and liver enlargement was observed. This study confirms that serum chymase levels are associated with DHF/Severe dengue disease in hospitalized pediatric patients. Chymase levels correlate with warning signs of vascular dysfunction highlighting the possible functional role of chymase in vascular leakage during dengue

    Dengue virus-elicited tryptase induces endothelial permeability and shock.

    Get PDF
    Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we identified that a MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection, through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in two independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock

    Extended Evaluation of Virological, Immunological and Pharmacokinetic Endpoints of CELADEN: A Randomized, Placebo-Controlled Trial of Celgosivir in Dengue Fever Patients.

    Get PDF
    UNLABELLED: CELADEN was a randomized placebo-controlled trial of 50 patients with confirmed dengue fever to evaluate the efficacy and safety of celgosivir (A study registered at ClinicalTrials.gov, number NCT01619969). Celgosivir was given as a 400 mg loading dose and 200 mg bid (twice a day) over 5 days. Replication competent virus was measured by plaque assay and compared to reverse transcription quantitative PCR (qPCR) of viral RNA. Pharmacokinetics (PK) correlations with viremia, immunological profiling, next generation sequence (NGS) analysis and hematological data were evaluated as exploratory endpoints here to identify possible signals of pharmacological activity. Viremia by plaque assay strongly correlated with qPCR during the first four days. Immunological profiling demonstrated a qualitative shift in T helper cell profile during the course of infection. NGS analysis did not reveal any prominent signature that could be associated with drug treatment; however the phylogenetic spread of patients' isolates underlines the importance of strain variability that may potentially confound interpretation of dengue drug trials conducted during different outbreaks and in different countries. Celgosivir rapidly converted to castanospermine (Cast) with mean peak and trough concentrations of 5727 ng/mL (30.2 μM) and 430 ng/mL (2.3 μM), respectively and cleared with a half-life of 2.5 (± 0.6) hr. Mean viral log reduction between day 2 and 4 (VLR2-4) was significantly greater in secondary dengue than primary dengue (p = 0.002). VLR2-4 did not correlate with drug AUC but showed a trend of greater response with increasing Cmin. PK modeling identified dosing regimens predicted to achieve 2.4 to 4.5 times higher Cmin. than in the CELADEN trial for only 13% to 33% increase in overall dose. A small, non-statistical trend towards better outcome on platelet nadir and difference between maximum and minimum hematocrit was observed in celgosivir-treated patients with secondary dengue infection. Optimization of the dosing regimen and patient stratification may enhance the ability of a clinical trial to demonstrate celgosivir activity in treating dengue fever based on hematological endpoints. A new clinical trial with a revised dosing regimen is slated to start in 2016 (NCT02569827). Furthermore celgosivir's potential value for treatment of other flaviruses such as Zika virus should be investigated urgently. TRIAL REGISTRATION: ClinicalTrials.gov NCT01619969

    Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial.

    No full text
    BACKGROUND: Dengue infection is the most common mosquito-borne viral disease worldwide, but no suitable antiviral drugs are available. We tested the α-glucosidase inhibitor celgosivir as a treatment for acute dengue fever. METHODS: To establish eligibility for inclusion in a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial, individuals aged 21-65 years who had had a fever (≥38°C) for less than 48 h, met at least two criteria indicating probable dengue infection, and had a positive result on a dengue point-of-care test kit or PCR assay were referred for screening at a centre in Singapore between July 30, 2012, and March 4, 2013. Using a web-based system, we randomly assigned patients who met full inclusion criteria after screening (1:1; random permuted block length four) to celgosivir (initial 400 mg loading dose within 6 h of randomisation, followed by 200 mg every 12 h for a total of nine doses) or matched placebo. Patients and the entire study team were masked to group assignment. The primary endpoints were mean virological log reduction (VLR) from baseline for days 2, 3, and 4, and area under the fever curve (AUC) for a temperature above 37°C from 0 h to 96 h. Efficacy analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT01619969. FINDINGS: We screened 69 patients and randomly assigned 50 (24 to celgosivir, 26 to placebo). Mean VLR was greater in the celgosivir group (-1·86, SD 1·07) than in the placebo group (-1·64, 0·75), but the difference was non-significant (-0·22, 90% CI -0·65 to 0·22; one-sided p=0·203). The mean AUC was also higher in the celgosivir group (54·92, SD 31·04) than in the placebo group (40·72, 18·69), but again the difference was non-significant (14·20, 90% CI 2·16-26·25; one-sided p=0·973). We noted similar incidences of adverse events between groups. INTERPRETATION: Although generally safe and well tolerated, celgosivir does not seem to reduce viral load or fever burden in patients with dengue. FUNDING: STOP Dengue Translational Clinical Research
    corecore