78 research outputs found

    Impact of macroeconomic variables on stock market returns: a case study of Colombo Stock Exchange, Sri Lanka

    Get PDF
    Unexpected circumstances with respect to the social and economic conditions, the stock market indices have been moving up and down with high volatility. This study examines the equilibrium relationships between the stock market indices and macro-economic factors in Sri Lankan during the period from January 2009 to December 2016 to capture the linear inter-dependencies, by using Vector Autoregressive Regression and Vector Error Correlation Model. Estimated co-integration rank test and Max-eigenvalue test suggested that there are two co-integration equations exist at the 0.05 level of significance. Furthermore, findings revealed that macroeconomic variables have direct effect on high volatility in Stock Market fluctuations. Moreover, the results concluded that Colombo Stock Exchange (CSE) is highly sensitive to the macroeconomic variables such as real gross domestic product and broad money supply

    Observation of anisotropic effect of antiferromagnetic ordering on the superconducting gap in ErNi2B2C

    Get PDF
    The point-contact (PC) spectra of the Andreev reflection dV/dI curves of the superconducting rare-earth nickel borocarbide ErNi2B2C (Tc=11 K) have been analyzed in the "one-gap" and "two-gap" approximations using the generalized Blonder-Tinkham-Klapwijk (GBTK) model and the Beloborod'ko (BB) model allowing for the pair-breaking effect of magnetic impurities. Experimental and calculated curves have been compared not only in shape, but in magnitude as well, which provide more reliable data for determining the temperature dependence of the energy gap (or superconducting order parameter) \Delta(T). The anisotropic effect of antiferromagnetic ordering at T_N =6 K on the superconducting gap/order parameter has been determined: as the temperature is lowered, \Delta(T) decreases by 25% in the c-direction and only by 4% in the ab-plane. It is found that the pair-breaking parameter increases in the vicinity of the magnetic transitions, the increase being more pronounced in the c-direction. The efficiency of the models was tested for providing \Delta(T) data for ErNi2B2C from Andreev reflection spectra.Comment: 16 two column pages, 20 figs., will be published in Fiz. Nizk. Temp. N10, 2010; V2: added - "Acknowledgement" & "Note added in proof

    Superconducting gap anisotropy of LuNi2B2C thin films from microwave surface impedance measurements

    Full text link
    Surface impedance measurements of LuNi2B2C superconducting thin films as a function of temperature have been performed down to 1.5 K and at 20 GHz using a dielectric resonator technique. The magnetic penetration depth closely reproduces the standard B.C.S. result, but with a reduced value of the energy gap at low temperature. These data provide evidence for an anisotropic s-wave character of the order parameter symmetry in LuNi2B2C. From the evaluation of the real part of complex conductivity, we have observed constructive (type II) coherence effects in the electromagnetic absorption below Tc.Comment: 15 pages, 4 figure

    Torque magnetometry study of metamagnetic transitions in single-crystal HoNi2B2C at T\approx 1.9 K

    Full text link
    Metamagnetic transitions in single-crystal rare-earth nickel borocarbide HoNi2_2B2_2C have been studied at T\approx 1.9 K with a Quantum Design torque magnetometer. This compound is highly anisotropic with a variety of metamagnetic states at low temperature which includes antiferromagnetic, ferrimagnetic, non-collinear and ferromagnetic-like (saturated paramagnet) states. The critical fields of the transitions depend crucially on the angle θ\theta between applied field and the easy axis [110]. Measurements of torque along the c-axis have been made while changing the angular direction of the magnetic field (parallel to basal tetragonal abab-planes) and with changing field at fixed angle over a wide angular range. Two new phase boundaries in the region of the non-collinear phase have been observed, and the direction of the magnetization in this phase has been precisely determined. At low field the antiferromagnetic phase is observed to be multidomain. In the angular range very close to the hard axis [100] (6ϕ6-6^{\circ} \lesssim\phi \lesssim 6^{\circ}, where ϕ\phi is the angle between field and the hard axis) the magnetic behavior is found to be ``frustrated'' with a mixture of phases with different directions of the magnetization.Comment: submitted to Phys. Rev. B, 12 pages, 12 figure

    Phenomenological Theory of Superconductivity and Magnetism in Ho1x_{1-x}Dyx_xNi2_2B2_2C

    Full text link
    The coexistence of the superconductivity and magnetism in the Ho1x_{1-x}Dyx_xNi2_2B2_2C is studied by using Ginzburg-Landau theory. This alloy shows the coexistence and complex interplay of superconducting and magnetic order. We propose a phenomenological model which includes two magnetic and two superconducting order parameters accounting for the multi-band structure of this material. We describe phenomenologically the magnetic fluctuations and order and demonstrate that they lead to anomalous behavior of the upper critical field. The doping dependence of TcT_c in Ho1x_{1-x}Dyx_xNi2_2B2_2C showing a reentrance behavior are analyzed yielding a very good agreement with experimental data.Comment: 4 pages, 3 figures, REVTeX, submitted to PR

    A coarse-grained multiscale model to simulate morphological changes of food-plant tissues undergoing drying

    Get PDF
    Numerical modelling has emerged as a powerful and effective tool to study various dynamic behaviours of biological matter. Such numerical modelling tools have contributed to the optimisations of food drying parameters leading to higher quality end-products in the field of food engineering. In this context, on of the most recent developments is the mesh-free based numerical models, which have demonstrated enhanced capabilities to model cellular deformations during drying, providing many benefits compared to conventional grid-based modelling approaches. However, the potential extension of this method for simulating bulk level tissues has been a challenge due to the increased requirement for higher computaional time and resources. As a solution for this, by incorporating meshfree features, a novel coarse-grained multiscale numerical model is proposed in this work to predict bulk level (macroscale) deformations of food plant tissues during drying

    Berry's phase for large spins in external fields

    Get PDF
    It is shown that even for large spins JJ the fundamental difference between integer and half-integer spins persists. In a quasi-classical description this difference enters via Berry's connection. This general phenomenon is derived and illustrated for large spins confined to a plane by crystalline electric fields. Physical realizations are rare-earth Nickel Borocarbides. Magnetic moments for half-integer spin (Dy3+^{3+}, J=15/2J=15/2) and magnetic susceptibilities for integer spin (Ho3+^{3+}, J=8J=8) are calculated. Experiments are proposed to furnish evidence for the predicted fundamental difference.Comment: 4 pages RevTe

    A layering model for superconductivity in the borocarbides

    Full text link
    We propose a superlattice model to describe superconductivity in layered materials, such as the borocarbide families with the chemical formul\ae\ RT2RT_2B2_2C and RTRTBC, with RR being (essentially) a rare earth, and TT a transition metal. We assume a single band in which electrons feel a local attractive interaction (negative Hubbard-UU) on sites representing the TTB layers, while U=0 on sites representing the RRC layers; the multi-band structure is taken into account minimally through a band offset ϵ\epsilon. The one-dimensional model is studied numerically through the calculation of the charge gap, the Drude weight, and of the pairing correlation function. A comparison with the available information on the nature of the electronic ground state (metallic or superconducting) indicates that the model provides a systematic parametrization of the whole borocarbide family.Comment: 4 figure

    Specific Heat Study of the Magnetic Superconductor HoNi2B2C

    Full text link
    The complex magnetic transitions and superconductivity of HoNi2B2C were studied via the dependence of the heat capacity on temperature and in-plane field angle. We provide an extended, comprehensive magnetic phase diagram for B // [100] and B // [110] based on the thermodynamic measurements. Three magnetic transitions and the superconducting transition were clearly observed. The 5.2 K transition (T_{N}) shows a hysteresis with temperature, indicating the first order nature of the transition at B=0 T. The 6 K transition (T_{M}), namely the onset of the long-range ordering, displays a dramatic in-plane anisotropy: T_{M} increases with increasing magnetic field for B // [100] while it decreases with increasing field for B // [110]. The anomalous anisotropy in T_{M} indicates that the transition is related to the a-axis spiral structure. The 5.5 K transition (T^{*}) shows similar behavior to the 5.2 K transition, i.e., a small in-plane anisotropy and scaling with Ising model. This last transition is ascribed to the change from a^{*} dominant phase to c^{*} dominant phase.Comment: 9 pages, 11 figure
    corecore