5 research outputs found

    Re-Evaluating Botryosphaeriales: Ancestral State Reconstructions of Selected Characters and Evolution of Nutritional Modes

    No full text
    Botryosphaeriales (Dothideomycetes, Ascomycota) occur in a wide range of habitats as endophytes, saprobes, and pathogens. The order Botryosphaeriales has not been subjected to evaluation since 2019 by Phillips and co-authors using phylogenetic and evolutionary analyses. Subsequently, many studies introduced novel taxa into the order and revised several families separately. In addition, no ancestral character studies have been conducted for this order. Therefore, in this study, we re-evaluated the character evolution and taxonomic placements of Botryosphaeriales species based on ancestral character evolution, divergence time estimation, and phylogenetic relationships, including all the novel taxa that have been introduced so far. Maximum likelihood, maximum parsimony, and Bayesian inference analyses were conducted on a combined LSU and ITS sequence alignment. Ancestral state reconstruction was carried out for conidial colour, septation, and nutritional mode. Divergence times estimates revealed that Botryosphaeriales originated around 109 Mya in the early epoch of the Cretaceous period. All six families in Botryosphaeriales evolved in the late epoch of the Cretaceous period (66–100 Mya), during which Angiosperms also appeared, rapidly diversified and became dominant on land. Families of Botryosphaeriales diversified during the Paleogene and Neogene periods in the Cenozoic era. The order comprises the families Aplosporellaceae, Botryosphaeriaceae, Melanopsaceae, Phyllostictaceae, Planistromellaceae and Saccharataceae. Furthermore, current study assessed two hypotheses; the first one being “All Botryosphaeriales species originated as endophytes and then switched into saprobes when their hosts died or into pathogens when their hosts were under stress”; the second hypothesis states that “There is a link between the conidial colour and nutritional mode in botryosphaerialean taxa”. Ancestral state reconstruction and nutritional mode analyses revealed a pathogenic/saprobic nutritional mode as the ancestral character. However, we could not provide strong evidence for the first hypothesis mainly due to the significantly low number of studies reporting the endophytic botryosphaerialean taxa. Results also showed that hyaline and aseptate conidia were ancestral characters in Botryosphaeriales and supported the relationship between conidial pigmentation and the pathogenicity of Botryosphaeriales species

    The world’s ten most feared fungi

    No full text
    An account is provided of the world’s ten most feared fungi. Within areas of interest, we have organized the entries in the order of concern. We put four human pathogens first as this is of concern to most people. This is followed by fungi producing mycotoxins that are highly harmful for humans; Aspergillus flavus, the main producer of aflatoxins, was used as an example. Problems due to indoor air fungi may also directly affect our health and we use Stachybotrys chartarum as an example. Not everyone collects and eats edible mushrooms. However, fatalities caused by mushroom intoxications often make news headlines and therefore we include one of the most poisonous of all mushrooms, Amanita phalloides, as an example. We then move on to the fungi that damage our dwellings causing serious anxiety by rotting our timber structures and flooring. Serpula lacrymans, which causes dry rot is an excellent example. The next example serves to represent all plant and forest pathogens. Here we chose Austropuccinia psidii as it is causing devastating effects in Australia and will probably do likewise in New Zealand. Finally, we chose an important amphibian pathogen which is causing serious declines in the numbers of frogs and other amphibians worldwide. Although we target the top ten most feared fungi, numerous others are causing serious concern to human health, plant production, forestry, other animals and our factories and dwellings. By highlighting ten feared fungi as an example, we aim to promote public awareness of the cost and importance of fungi

    The amazing potential of fungi: 50 ways we can exploit fungi industrially

    No full text
    International audienceFungi are an understudied, biotechnologically valuable group of organisms. Due to the immense range of habitats thatfungi inhabit, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi havedeveloped numerous survival mechanisms. The unique attributes of fungi thus herald great promise for their application inbiotechnology and industry. Moreover, fungi can be grown with relative ease, making production at scale viable. Thesearch for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential inlocating organisms with novel industrial uses that will lead to novel products. This manuscript reviews fifty ways in whichfungi can potentially be utilized as biotechnology. We provide notes and examples for each potential exploitation and giveexamples from our own work and the work of other notable researchers. We also provide a flow chart that can be used toconvince funding bodies of the importance of fungi for biotechnological research and as potential products. Fungi haveprovided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untappedresource with enormous industrial potentia

    Redined families of Dothideomycetes: orders and families incertain in Dothideomycetes

    Full text link
    peer reviewedNumerous new taxa and classifications of Dothideomycetes have been published following the last monograph of families of Dothideomycetes in 2013. A recent publication by Honsanan et al. in 2020 expanded information of families in Dothideo- mycetidae and Pleosporomycetidae with modern classifications. In this paper, we provide a refined updated document on orders and families incertae sedis of Dothideomycetes. Each family is provided with an updated description, notes, including figures to represent the morphology, a list of accepted genera, and economic and ecological significances. We also provide phylogenetic trees for each order. In this study, 31 orders which consist 50 families are assigned as orders incertae sedis in Dothideomycetes, and 41 families are treated as families incertae sedis due to lack of molecular or morphological evidence. The new order, Catinellales, and four new families, Catinellaceae, Morenoinaceae Neobuelliellaceae and Thyrinulaceae are introduced. Seven genera (Neobuelliella, Pseudomicrothyrium, Flagellostrigula, Swinscowia, Macroconstrictolumina, Pseudobogoriella, and Schummia) are introduced. Seven new species (Acrospermum urticae, Bogoriella complexoluminata, Dothiorella ostryae, Dyfrolomyces distoseptatus, Macroconstrictolumina megalateralis, Patellaria microspora, and Pseu- domicrothyrium thailandicum) are introduced base on morphology and phylogeny, together with two new records/reports and five new collections from different families. Ninety new combinations are also provided in this paper
    corecore