19 research outputs found

    Dissimilar joining of aluminium to ultra-high strength steels by friction stir welding

    No full text
    Multi-material structures are increasingly used in vehicle bodies to reduce weight of cars. The use of these lightweight structures is driven by requirements to improve fuel economy and reduce CO2 emissions. The automotive industry has replaced conventional steel components by lighter metals such as aluminium alloy. This is done together with cutting weight of structures using more advanced strength steels. However, sound joining is still difficult to achieve due to differences in chemical and thermal properties.   This research aims to develop a new innovative welding technique for joining aluminium alloy to ultra-high strength steels. The technique is based on friction stir welding process while the non-consumable tool is made of an ordinary tool steel. Welding was done by penetrating the rotating tool from the aluminium side without penetrating into the steel surface. One grade of Al-Mg aluminium alloy was welded to ultra-high strength steels under lap joint configuration. Different types of steel surface coatings including uncoated, hot-dipped galvanised and electrogalvanised coating have been studied in order to investigate the influence of zinc on the joint properties. The correlation among welding parameters, microstructures, intermetallic formation and mechanical properties are demonstrated in this thesis.  Results have shown that friction stir welding can deliver fully strong joints between aluminium alloy and ultra-high strength steels. Two intermetallic phases, Al5Fe2 and Al13Fe4, were formed at the interface of Al to Fe regardless of surface coating conditions. The presence of zinc can improve joint strength especially at low heat input welding due to an increased atomic bonding at Al-Fe interface. The formation of intermetallic phases as well as their characteristics has been demonstrated in this thesis. The proposed welding mechanisms are given based on metallography investigations and related literature.QC 20170519</p

    Development and evaluation of hybrid joining for metals to polymers using friction stir welding

    No full text
    Combinations of different materials are increasingly used in the modern engineering structures. The driving forces of this trend are rising fuel costs, global warming, customer demands and strict emission standards. Engineers and industries are forced to improve fuel economy and cut emissions by introducing newly design engines and lightweighting of structural components. The use of lightweight materials in the structures has proved successful to solve these problems in many industries especially automobile and aerospace. However, industry still lacks knowledge how to manufacture components from polymeric materials in combination with metals where significant differences exist in properties. This thesis aims to demonstrate and generate the methodology and guidelines for hybrid joining of aluminium alloys to thermoplastics using friction stir welding. The developed technique was identified, optimized and evaluated from experimental data, metallography and mechanical characterization. The success of the technique is assessed by benchmarking with recent literatures. In this work, lap joints between aluminium alloys (AA5754, AA6111) and thermoplastics (PP, PPS) were produced by the friction stir welding technique. The specimens were joined with the friction stir welding tools under as-received conditions. Metallic chips were generated and merged with the molten thermoplastic to form a joint under the influence of the rotating and translating tool. The effects of process parameters such as rotational speed, translational speed and distance to backing were analyzed and discussed. The investigation found joint strength was dominated by mechanical interlocking between the stir zone and the aluminium sheet. The results also show that the joint strength is of the same order of magnitude as for other alternative joining techniques in the literature.QC 20150908</p

    Development and evaluation of hybrid joining for metals to polymers using friction stir welding

    No full text
    Combinations of different materials are increasingly used in the modern engineering structures. The driving forces of this trend are rising fuel costs, global warming, customer demands and strict emission standards. Engineers and industries are forced to improve fuel economy and cut emissions by introducing newly design engines and lightweighting of structural components. The use of lightweight materials in the structures has proved successful to solve these problems in many industries especially automobile and aerospace. However, industry still lacks knowledge how to manufacture components from polymeric materials in combination with metals where significant differences exist in properties. This thesis aims to demonstrate and generate the methodology and guidelines for hybrid joining of aluminium alloys to thermoplastics using friction stir welding. The developed technique was identified, optimized and evaluated from experimental data, metallography and mechanical characterization. The success of the technique is assessed by benchmarking with recent literatures. In this work, lap joints between aluminium alloys (AA5754, AA6111) and thermoplastics (PP, PPS) were produced by the friction stir welding technique. The specimens were joined with the friction stir welding tools under as-received conditions. Metallic chips were generated and merged with the molten thermoplastic to form a joint under the influence of the rotating and translating tool. The effects of process parameters such as rotational speed, translational speed and distance to backing were analyzed and discussed. The investigation found joint strength was dominated by mechanical interlocking between the stir zone and the aluminium sheet. The results also show that the joint strength is of the same order of magnitude as for other alternative joining techniques in the literature.QC 20150908</p

    Hybrid Joining of Aluminum to Thermoplastics with Friction Stir Welding

    No full text
    Hybrid structures including aluminum-thermoplastic and aluminum-reinforced thermoplastic composite are increasingly important in the near future innovations due to its lightweight and high strength-to-weight ratio. A critical point for metal-polymer application is that sound joining of these materials is difficult to achieve owing to a large difference in surface energy and dissimilar structure between metal and polymer. In practice, two major joining methods for hybrid structures are mechanical joining and adhesive bonding. However, there are some drawbacks of these conventional methods such as stress concentration, long curing time and low reliability joints. A new novel metal-polymer hybrid joining is required to overcome these issues as well as manufacturing and cost perspectives. To this end, this work aims to develop a general methodology to apply friction stir welding techniques to join a wide range of thermoplastics with and without fibers to aluminum alloy sheets. The present work proposed an experimental study to attain insight knowledge on the influences of welding parameters on the quality of hybrid joints in term of the maximum tensile shear strength. This includes the role of tool geometries, welding methodology as well as material weldability in the investigation. The results showed that friction stir welding is a promising technique for joining of thermoplastic to aluminum. Microstructural observation showed that a good mixing between aluminum and thermoplastic as well as defect-free weldments were obtained. Tool geometries and welding speed are two factors that significantly contribute to the quality of friction stir welded hybrid joints. The results also demonstrated that weld fracture modes are associated with material mixing as well as interfacial bonding between aluminum and thermoplastic. An evaluation of the joint strength was benchmarked with the relevant literatures on hybrid joining. The results of proposed technique showed that the maximum tensile shear strength of friction stir welded joints were the same order of magnitude as the joints welded by laser welding
    corecore