190 research outputs found

    Large inverse tunneling magnetoresistance in Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al/MgO/CoFe magnetic tunnel junctions

    Full text link
    Magnetic tunnel junctions with the layer sequence Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al/MgO/CoFe were fabricated by magnetron sputtering at room temperature (RT). The samples exhibit a large inverse tunneling magnetoresistance (TMR) effect of up to -66% at RT. The largest value of -84% at 20 K reflects a rather weak influence of temperature. The dependence on the voltage drop shows an unusual behavior with two almost symmetric peaks at ±600\pm600 mV with large inverse TMR ratios and small positive values around zero bias

    Structural and magneto-transport characterization of Co_2Cr_xFe_(1-x)Al Heusler alloy films

    Full text link
    We investigate the structure and magneto-transport properties of thin films of the Co_2Cr_xFe_(1-x)Al full-Heusler compound, which is predicted to be a half-metal by first-principles theoretical calculations. Thin films are deposited by magnetron sputtering at room temperature on various substrates in order to tune the growth from polycrystalline on thermally oxidized Si substrates to highly textured and even epitaxial on MgO(001) substrates, respectively. Our Heusler films are magnetically very soft and ferromagnetic with Curie temperatures up to 630 K. The total magnetic moment is reduced compared to the theoretical bulk value, but still comparable to values reported for films grown at elevated temperature. Polycrystalline Heusler films combined with MgO barriers are incorporated into magnetic tunnel junctions and yield 37% magnetoresistance at room temperature

    Strain-induced insulator state in La_0.7Sr_0.3CoO_3

    Full text link
    We report on the observation of a strain-induced insulator state in ferromagnetic La_0.7Sr_0.3CoO_3 films. Tensile strain above 1% is found to enhance the resistivity by several orders of magnitude. Reversible strain of 0.15% applied using a piezoelectric substrate triggers huge resistance modulations, including a change by a factor of 10 in the paramagnetic regime at 300 K. However, below the ferromagnetic ordering temperature, the magnetization data indicate weak dependence on strain for the spin state of the Co ions. We interpret the changes observed in the transport properties in terms of a strain-induced splitting of the Co e_g levels and reduced double exchange, combined with a percolation-type conduction in an electronic cluster state

    Reversible strain effect on the magnetization of LaCoO3 films

    Full text link
    The magnetization of ferromagnetic LaCoO3 films grown epitaxially on piezoelectric substrates has been found to systematically decrease with the reduction of tensile strain. The magnetization change induced by the reversible strain variation reveals an increase of the Co magnetic moment with tensile strain. The biaxial strain dependence of the Curie temperature is estimated to be below 4K/% in the as-grown tensile strain state of our films. This is in agreement with results from statically strained films on various substrates

    Thickness-dependent Ru exchange spring at La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>–SrRuO<sub>3</sub> interface

    Get PDF
    The conducting oxide ferromagnets SrRuO3 (SRO) and LaSr0.3MnO3 (LSMO) form a Ru exchange spring at a coherent low‐interdiffusion interface grown on TiO2‐terminated SrTiO3(STO)(001) substrates as SRO(d)/LSMO/STO(001) bilayers. Field‐ and temperature‐dependent magnetization data with systematically varied thickness d of SRO from 7 to 18 unit cells (uc) indicate a thickness of 10–14 uc of the exchange spring which governs magnetic switching and causes thickness‐dependent field‐cooling effects. Mn L3 edge X‐ray magnetic circular dichroism (XMCD) data reveal the dominating in‐plane orientation of interfacial spins. In low magnetic fields, noncoplanar, topologically nontrivial spin textures arise and can be switched, driven by the Zeeman energy of the LSMO layer

    Anesthesia by electro acupuncture in neurosurgery

    Get PDF
    Given the fact that in neuroanesthesia the choice of anesthetic substances must take into account the effect they have over the cerebral substance, we felt that using as few drugs as possible eliminates their shortcomings, improving the intraoperative conditions as well as the outcome of the surgical intervention. For this purpose, we have used anesthesia through electro acupunctural stimulation associated to hypnosis, drug relaxation under controlled breathing on a group of 12 patients, from which 10 patients had undergone brain surgery and 2 patients had undergone surgery for herniated disc. The outcomes showed the better effect of this method than that of the classical, the patients showing excellent intraoperative hemodynamic stability, relaxed brain, without the need to use depleted substances, rapid awakening with a much better postoperative analgesia

    Implementation of Whole-Body MRI (MY-RADS) within the OPTIMUM/MUKnine multi-centre clinical trial for patients with myeloma.

    Get PDF
    BACKGROUND: Whole-body (WB) MRI, which includes diffusion-weighted imaging (DWI) and T1-w Dixon, permits sensitive detection of marrow disease in addition to qualitative and quantitative measurements of disease and response to treatment of bone marrow. We report on the first study to embed standardised WB-MRI within a prospective, multi-centre myeloma clinical trial (IMAGIMM trial, sub-study of OPTIMUM/MUKnine) to explore the use of WB-MRI to detect minimal residual disease after treatment. METHODS: The standardised MY-RADS WB-MRI protocol was set up on a local 1.5 T scanner. An imaging manual describing the MR protocol, quality assurance/control procedures and data transfer was produced and provided to sites. For non-identical scanners (different vendor or magnet strength), site visits from our physics team were organised to support protocol optimisation. The site qualification process included review of phantom and volunteer data acquired at each site and a teleconference to brief the multidisciplinary team. Image quality of initial patients at each site was assessed. RESULTS: WB-MRI was successfully set up at 12 UK sites involving 3 vendor systems and two field strengths. Four main protocols (1.5 T Siemens, 3 T Siemens, 1.5 T Philips and 3 T GE scanners) were generated. Scanner limitations (hardware and software) and scanning time constraint required protocol modifications for 4 sites. Nevertheless, shared methodology and imaging protocols enabled other centres to obtain images suitable for qualitative and quantitative analysis. CONCLUSIONS: Standardised WB-MRI protocols can be implemented and supported in prospective multi-centre clinical trials. Trial registration NCT03188172 clinicaltrials.gov; registration date 15th June 2017 https://clinicaltrials.gov/ct2/show/study/NCT03188172
    • 

    corecore