12 research outputs found

    Representation Learning for Words and Entities

    Get PDF
    This thesis presents new methods for unsupervised learning of distributed representations of words and entities from text and knowledge bases. The first algorithm presented in the thesis is a multi-view algorithm for learning representations of words called Multiview Latent Semantic Analysis (MVLSA). By incorporating up to 46 different types of co-occurrence statistics for the same vocabulary of english words, I show that MVLSA outperforms other state-of-the-art word embedding models. Next, I focus on learning entity representations for search and recommendation and present the second method of this thesis, Neural Variational Set Expansion (NVSE). NVSE is also an unsupervised learning method, but it is based on the Variational Autoencoder framework. Evaluations with human annotators show that NVSE can facilitate better search and recommendation of information gathered from noisy, automatic annotation of unstructured natural language corpora. Finally, I move from unstructured data and focus on structured knowledge graphs. I present novel approaches for learning embeddings of vertices and edges in a knowledge graph that obey logical constraints.Comment: phd thesis, Machine Learning, Natural Language Processing, Representation Learning, Knowledge Graphs, Entities, Word Embeddings, Entity Embedding

    Representation Learning for Words and Entities

    Get PDF
    This thesis presents new methods for unsupervised learning of distributed representations of words and entities from text and knowledge bases. The first algorithm presented in the thesis is a multi-view algorithm for learning representations of words called Multiview LSA (MVLSA). Through experiments on close to 50 different views, I show that MVLSA outperforms other state-of-the-art word embedding models. After that, I focus on learning entity representations for search and recommendation and present the second algorithm of this thesis called Neural Variational Set Expansion (NVSE). NVSE is also an unsupervised learning method, but it is based on the Variational Autoencoder framework. Evaluations with human annotators show that NVSE can facilitate better search and recommendation of information gathered from noisy, automatic annotation of unstructured natural language corpora. Finally, I move from unstructured data and focus on structured knowledge graphs. Moreover, I present novel approaches for learning embeddings of vertices and edges in a knowledge graph that obey logical constraints

    Script Induction as Language Modeling

    No full text
    The narrative cloze is an evaluation met-ric commonly used for work on automatic script induction. While prior work in this area has focused on count-based meth-ods from distributional semantics, such as pointwise mutual information, we argue that the narrative cloze can be productively reframed as a language modeling task. By training a discriminative language model for this task, we attain improvements of up to 27 percent over prior methods on stan-dard narrative cloze metrics.
    corecore