32 research outputs found

    Faster Family-wise Error Control for Neuroimaging with a Parametric Bootstrap

    Full text link
    In neuroimaging, hundreds to hundreds of thousands of tests are performed across a set of brain regions or all locations in an image. Recent studies have shown that the most common family-wise error (FWE) controlling procedures in imaging, which rely on classical mathematical inequalities or Gaussian random field theory, yield FWE rates that are far from the nominal level. Depending on the approach used, the FWER can be exceedingly small or grossly inflated. Given the widespread use of neuroimaging as a tool for understanding neurological and psychiatric disorders, it is imperative that reliable multiple testing procedures are available. To our knowledge, only permutation joint testing procedures have been shown to reliably control the FWER at the nominal level. However, these procedures are computationally intensive due to the increasingly available large sample sizes and dimensionality of the images, and analyses can take days to complete. Here, we develop a parametric bootstrap joint testing procedure. The parametric bootstrap procedure works directly with the test statistics, which leads to much faster estimation of adjusted \emph{p}-values than resampling-based procedures while reliably controlling the FWER in sample sizes available in many neuroimaging studies. We demonstrate that the procedure controls the FWER in finite samples using simulations, and present region- and voxel-wise analyses to test for sex differences in developmental trajectories of cerebral blood flow

    Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting-state functional connectivity and multilayer network modularity

    Get PDF
    Dynamic functional connectivity reflects the spatiotemporal organization of spontaneous brain activity in health and disease. Dynamic functional connectivity may be susceptible to artifacts induced by participant motion. This report provides a systematic evaluation of 12 commonly used participant-level confound regression strategies designed to mitigate the effects of micromovements in a sample of 393 youths (ages 8–22 years). Each strategy was evaluated according to a number of benchmarks, including (a) the residual association between participant motion and edge dispersion, (b) distance-dependent effects of motion on edge dispersion, (c) the degree to which functional subnetworks could be identified by multilayer modularity maximization, and (d) measures of module reconfiguration, including node flexibility and node promiscuity. Results indicate variability in the effectiveness of the evaluated pipelines across benchmarks. Methods that included global signal regression were the most consistently effective de-noising strategies. Dynamic functional connectivity reflects the spatiotemporal organization of spontaneous brain activity in health and disease, but it can be susceptible to motion artifacts. Here we provide a systematic evaluation of 12 commonly used participant-level confound regression strategies designed to mitigate the effects of micromovements in a sample of 393 youths (ages 8–22 years). Each strategy was evaluated according to the residual association between participant motion and edge dispersion, distance-dependent effects of motion on edge dispersion, the degree to which functional subnetworks could be identified by multilayer modularity maximization, and measures of module reconfiguration, including node flexibility and node promiscuity. Results indicate variability in the effectiveness of the evaluated pipelines across benchmarks. Methods that included global signal regression were the most consistently effective de-noising strategies

    Associations Between Neighborhood SES and Functional Brain Network Development

    Get PDF
    Higher socioeconomic status (SES) in childhood is associated with stronger cognitive abilities, higher academic achievement, and lower incidence of mental illness later in development. While prior work has mapped the associations between neighborhood SES and brain structure, little is known about the relationship between SES and intrinsic neural dynamics. Here, we capitalize upon a large cross-sectional community-based sample (Philadelphia Neurodevelopmental Cohort, ages 8–22 years, n = 1012) to examine associations between age, SES, and functional brain network topology. We characterize this topology using a local measure of network segregation known as the clustering coefficient and find that it accounts for a greater degree of SES-associated variance than mesoscale segregation captured by modularity. High-SES youth displayed stronger positive associations between age and clustering than low-SES youth, and this effect was most pronounced for regions in the limbic, somatomotor, and ventral attention systems. The moderating effect of SES on positive associations between age and clustering was strongest for connections of intermediate length and was consistent with a stronger negative relationship between age and local connectivity in these regions in low-SES youth. Our findings suggest that, in late childhood and adolescence, neighborhood SES is associated with variation in the development of functional network structure in the human brain

    Fork of TemplateFlow

    No full text
    Standardizing standard 3D spaces in neuroimaging (aka "the Zone of templates"

    motion-test-data

    No full text
    Test dataset for "Mitigating head motion artefact in functional connectivity MRI"

    Analysis of task-based functional MRI data preprocessed with fMRIPrep

    Full text link
    Functional magnetic resonance imaging (fMRI) is a standard tool to investigate the neural correlates of cognition. fMRI noninvasively measures brain activity, allowing identification of patterns evoked by tasks performed during scanning. Despite the long history of this technique, the idiosyncrasies of each dataset have led to the use of ad-hoc preprocessing protocols customized for nearly every different study. This approach is time consuming, error prone and unsuitable for combining datasets from many sources. Here we showcase fMRIPrep (http://fmriprep.org), a robust tool to prepare human fMRI data for statistical analysis. This software instrument addresses the reproducibility concerns of the established protocols for fMRI preprocessing. By leveraging the Brain Imaging Data Structure to standardize both the input datasets (MRI data as stored by the scanner) and the outputs (data ready for modeling and analysis), fMRIPrep is capable of preprocessing a diversity of datasets without manual intervention. In support of the growing popularity of fMRIPrep, this protocol describes how to integrate the tool in a task-based fMRI investigation workflow

    Contextual connectivity: A framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks

    No full text
    Investigations of the human brain's connectomic architecture have produced two alternative models: one describes the brain's spatial structure in terms of static localized networks, and the other describes the brain's temporal structure in terms of dynamic whole-brain states. Here, we used tools from connectivity dynamics to develop a synthesis that bridges these models. Using resting fMRI data, we investigated the assumptions undergirding current models of the human connectome. Consistent with state-based models, our results suggest that static localized networks are superordinate approximations of underlying dynamic states. Furthermore, each of these localized, dynamic connectivity states is associated with global changes in the whole-brain functional connectome. By nesting localized dynamic connectivity states within their whole-brain contexts, we demonstrate the relative temporal independence of brain networks. Our assay for functional autonomy of coordinated neural systems is broadly applicable, and our findings provide evidence of structure in temporal state dynamics that complements the well-described static spatial organization of the brain

    Contextual connectivity: A framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks

    No full text
    ABSTRACT Investigations of the human brain’s connectomic architecture have produced two alternative models: one describes the brain’s spatial structure in terms of localized networks, and the other describes the brain’s temporal structure in terms of whole-brain states. Here, we used tools from connectivity dynamics to develop a synthesis that bridges these models. Using task-free fMRI data, we investigated the assumptions undergirding current models of the connectome. Consistent with state-based models, our results suggest that localized networks are superordinate approximations of underlying dynamic states. Furthermore, each of these localized, moment-to-moment connectivity states is associated with global changes in the whole-brain functional connectome. By nesting localized connectivity states within their whole-brain contexts, we demonstrate the relative temporal independence of brain networks. Our assay for functional autonomy of coordinated neural systems is broadly applicable across populations, and our findings provide evidence of structure in temporal dynamics that complements the well-described spatial organization of the brain
    corecore