11 research outputs found
Preoperative assessment of meningioma aggressiveness by Thallium-201 brain SPECT
Introduction: Meningioma is usually a benign brain tumor, but sometimes with aggressive course. The aim of this study was to assess the ability of 201Tl Brain SPECT to differentiate the pathologic grade of meningioma preoperatively. Methods: Thirty lesions in 28 patients were evaluated in this study. Early (20 minutes) and late (3 hours) brain SPECT images were performed and early uptake ratio (EUR), late uptake ratio (LUR) and retention index (RI) were calculated. All patients were operated and pathologic grade of tumors were defined according to World Health Organization grading system. Results: SPECT results were compared in different pathologic groups. Data analysis clarified no significant difference of EUR in benign and aggressive meningioma (P=0.2). However LUR and RI were significantly higher in aggressive tumors (P=0.001 and P=0.02, respectively). Conclusion: According to our data Tl-201 Brain SPECT with early and late imaging has 80 sensitivity and specificity to differentiate malignant from benign meningioma
Impact of metoclopramide on image quality in myocardial perfusion imaging
Background: The effectiveness of metoclopramide in reducing gastrointestinal-induced artifacts in myocardial perfusion imaging (MPI) is a subject of debate. We examined the significance of this pharmacological intervention in the quality of images obtained from MPI studies. Patients and Methods: A total of 211 suspected or known cases with coronary artery disease routinely referred to our nuclear medicine department for MPI were randomly assigned to group A and group B. Group A (N=125) comprised patients who received 10 mg of metoclopramide orally after the injection of the radiotracer technetium-99m-labeled methoxyisobutyl isonitril (Tc-MIBI) 1 h before image acquisition, and group B (N=86) comprised patients who did not receive any pharmacological intervention and were considered the control group. All the scans in each group were assessed in the rest phase of a routine 2-day protocol. The single-photon emission computerized tomography (SPECT) images were visually evaluated in terms of extracardiac activities and their effects on image quality by three nuclear medicine physicians, who were blinded to the details of the protocol. Results: Of the 125 patients who had received metoclopramide, 16 (13%) had nonacceptable, 72 (57.6%) had acceptable (interpretable), and 37 (29.6%) had good image quality. The image quality in group B was nonacceptable in 10 (11.23%), acceptable in 48 (50.23%), and good in 28 (33.56%) patients. The overall interobserver agreement was good (κ: 0.6-0.9, P<0.05) among the three readers. Conclusion: There was no statistically significant difference in terms of MPI-SPECT image quality between patients who received metoclopramide and those in the control group. Metoclopramide, therefore, did not exert a remarkable effect on the quality of our MPI scans. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins
Assessment of left ventricular mechanical dyssynchrony by phase analysis of gated-SPECT myocardial perfusion imaging and tissue Doppler imaging: Comparison between QGS and ECTb software packages
Background: Recently, the phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become feasible via several software packages for the evaluation of left ventricular mechanical dyssynchrony. We compared two quantitative software packages, quantitative gated SPECT (QGS) and Emory cardiac toolbox (ECTb), with tissue Doppler imaging (TDI) as the conventional method for the evaluation of left ventricular mechanical dyssynchrony.
Methods and Results: Thirty-one patients with severe heart failure (ejection fraction ≤35%) and regular heart rhythm, who referred for gated-SPECT MPI, were enrolled. TDI was performed within 3 days after MPI. Dyssynchrony parameters derived from gated-SPECT MPI were analyzed by QGS and ECTb and were compared with the Yu index and septal-lateral wall delay measured by TDI. QGS and ECTb showed a good correlation for assessment of phase histogram bandwidth (PHB) and phase standard deviation (PSD) (r = 0.664 and r = 0.731, P < .001, respectively). However, the mean value of PHB and PSD by ECTb was significantly higher than that of QGS. No significant correlation was found between ECTb and QGS and the Yu index. Nevertheless, PHB, PSD, and entropy derived from QGS revealed a significant (r = 0.424, r = 0.478, r = 0.543, respectively; P < .02) correlation with septal-lateral wall delay.
Conclusion: Despite a good correlation between QGS and ECTb software packages, different normal cut-off values of PSD and PHB should be defined for each software package. There was only a modest correlation between phase analysis of gated-SPECT MPI and TDI data, especially in the population of heart failure patients with both narrow and wide QRS complex. © 2014, American Society of Nuclear Cardiology
Gated spect phase analysis of abnormal left ventricular wall motion polar maps in patients with normal perfusion, normal global function, and low pretest probability of ischemic heart disease
Background: One of the probable reasons for wall motion polar map abnormalities is left ventricular (LV) dyssynchrony. The objective of this study was to evaluate LV dyssynchrony via the phase analysis on myocardial perfusion imaging (MPI) in patients with a low pretest probability of ischemic heart disease (IHD) and normal electrocardiography (ECG)-gated MPI as the possible contributor to LV regional wall motion polar map abnormalities. Methods: A total of 181 patients with a low likelihood of IHD, normal MPI, a normal global function, and a normal global ejection fraction were divided into 2 groups: Group A: 81 patients with abnormal regional wall motion and Group B: 100 patients with normal wall motion polar maps. Dyssynchrony in the LV wall was assessed in terms of the phase analysis indices of entropy, the phase histogram bandwidth, and the phase standard deviation quantified by quantitative gated SPECT software, and the results for both groups were compared. Results: The mean entropy values in the LV anterior, lateral, inferior, and particularly septal walls (P < 0.0001), as well as the mean entropy value in the LV apical wall (P = 0.030), in Group A were significantly higher than those in Group B. Moreover, the phase histogram bandwidth and the phase standard deviation were considerably higher in Group A than in Group B in all LV walls (P < 0.0001), except the LV apical wall (P = 0.063 and P = 0.036) respectively. Conclusions: Assessment of the phase analysis indices for LV dyssynchrony could be used in patients with a low probability of IHD, a normal LV perfusion, and abnormal wall motion polar maps as a complementary tool for the interpreting physician. © 2020, Iranian Heart Association. All rights reserved
Influence of respiratory motion correction on quantification of myocardial perfusion SPECT
Background: Respiratory-related cardiac motion could have considerable effects on myocardial perfusion imaging, leading to misinterpretation of the images. In this study, we examined the influence of respiratory correction on ECG-gated myocardial perfusion SPECT (RC-GSPECT) concerning regional myocardial perfusion and function. Materials and Methods: Using the NCAT phantom, a typical torso phantom was generated. SimSET, a Monte Carlo simulator, was used to image the photon emerging from the phantom. Twenty-six patients underwent a 2-day stress-rest ECG-gated myocardial perfusion SPECT (GSPECT) imaging. A separate study was also performed by simultaneous respiratory and cardiac triggering with the real-time position management (RPM) for respiratory correction (RC). Results: In simulation study, count density in the inferior and inferoseptal walls increased in the lower bin of the respiratory cycle. On the other hand, there was a higher correlation between RC-GSPECT and echocardiography for left ventricular ejection fraction (LVEF) (r = 0.95, P < .01 vs r = 0.88, P < .01 for GSPECT). Conclusion: We proposed a new approach for respiratory and cardiac-gated SPECT to eliminate respiratory motion artifacts. RC-GSPECT is a feasible method in MPI studies and may play an important role to improve the quality of MPI images, particularly in the inferior wall. © 2014, American Society of Nuclear Cardiology
Identification of Diverse Mycoviruses through Metatranscriptomics Characterization of the Viromes of Five Major Fungal Plant Pathogens
Mycoviruses can have a marked effect on natural fungal communities and influence plant health and productivity. However, a comprehensive picture of mycoviral diversity is still lacking. To characterize the viromes of five widely dispersed plant-pathogenic fungi, Colletotrichum truncatum, Macrophomina phaseolina, Diaporthe longicolla, Rhizoctonia solani, and Sclerotinia sclerotiorum, a high-throughput sequencing-based metatranscriptomic approach was used to detect viral sequences. Total RNA and double-stranded RNA (dsRNA) from mycelia and RNA from samples enriched for virus particles were sequenced. Sequence data were assembled de novo, and contigs with predicted amino acid sequence similarities to viruses in the nonredundant protein database were selected. The analysis identified 72 partial or complete genome segments representing 66 previously undescribed mycoviruses. Using primers specific for each viral contig, at least one fungal isolate was identified that contained each virus. The novel mycoviruses showed affinity with 15 distinct lineages: Barnaviridae, Benyviridae, Chrysoviridae, Endornaviridae, Fusariviridae, Hypoviridae, Mononegavirales, Narnaviridae, Ophioviridae, Ourmiavirus, Partitiviridae, Tombusviridae, Totiviridae, Tymoviridae, and Virgaviridae. More than half of the viral sequences were predicted to be members of the Mitovirus genus in the family Narnaviridae, which replicate within mitochondria. Five viral sequences showed strong affinity with three families (Benyviridae, Ophioviridae, and Virgaviridae) that previously contained no mycovirus species. The genomic information provides insight into the diversity and taxonomy of mycoviruses and coevolution of mycoviruses and their fungal hosts. IMPORTANCE Plant-pathogenic fungi reduce crop yields, which affects food security worldwide. Plant host resistance is considered a sustainable disease management option but may often be incomplete or lacking for some crops to certain fungal pathogens or strains. In addition, the rising issues of fungicide resistance demand alternative strategies to reduce the negative impacts of fungal pathogens. Those fungus-infecting viruses (mycoviruses) that attenuate fungal virulence may be welcome additions for mitigation of plant diseases. By high-throughput sequencing of the RNAs from 275 isolates of five fungal plant pathogens, 66 previously undescribed mycoviruses were identified. In addition to identifying new potential biological control agents, these results expand the grand view of the diversity of mycoviruses and provide possible insights into the importance of intracellular and extracellular transmission in fungus-virus coevolution