60 research outputs found

    Magnetosonic ULF waves with anomalous plasma - magnetic field correlations: standing waves and inhomogeneous plasmas

    Get PDF
    Ultra-low frequency (ULF) wave observations across the heliosphere often rely on the sign of correlations between plasma (density/pressure) and magnetic field perturbations to distinguish between fast and slow magnetosonic modes. However, the assumptions behind this magnetohydrodynamic result are not always valid, particularly within the magnetosphere which is inhomogeneous and supports standing waves along the geomagnetic field. Through theory and a global simulation, we find both effects can result in anomalous plasma–magnetic field correlations. The interference pattern in standing waves can lead both body and surface magnetosonic waves to have different cross-phases than their constituent propagating waves. Furthermore, if the scale of gradients in the background are shorter than the wavelength or the waves are near-incompressible, then advection by the wave of inhomogeneities can overcome the wave's inherent sense of compression. These effects need to be allowed for and taken into account when applying the typical diagnostic to observations

    Multi-Scale Modeling of Global of Magnetospheric Dynamics

    Get PDF
    To understand the role of magnetic reconnection in global evolution of magnetosphere and to place spacecraft observations into global context it is essential to perform global simulations with physically motivated model of dissipation that is capable to reproduce reconnection rates predicted by kinetic models. In our efforts to bridge the gap between small scale kinetic modeling and global simulations we introduced an approach that allows to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. We utilized the high resolution global MHD code BATSRUS and incorporate primary mechanism controlling the dissipation in the vicinity of reconnection sites in terms of kinetic corrections to induction and energy equations. One of the key elements of the multiscale modeling of magnetic reconnection is identification of reconnection sites and boundaries of surrounding diffusion regions where non-MHD corrections are required. Reconnection site search in the equatorial plane implemented in our previous studies is extended to cusp and magnetopause reconnection, as well as for magnetotail reconnection in realistic asymmetric configurations. The role of feedback between the non-ideal effects in diffusion regions and global magnetosphere structure and dynamics will be discussed

    Auditory Feedback Control of Vocal Pitch during Sustained Vocalization: A Cross-Sectional Study of Adult Aging

    Get PDF
    Background: Auditory feedback has been demonstrated to play an important role in the control of voice fundamental frequency (F0), but the mechanisms underlying the processing of auditory feedback remain poorly understood. It has been well documented that young adults can use auditory feedback to stabilize their voice F0 by making compensatory responses to perturbations they hear in their vocal pitch feedback. However, little is known about the effects of aging on the processing of audio-vocal feedback during vocalization. Methodology/Principal Findings: In the present study, we recruited adults who were between 19 and 75 years of age and divided them into five age groups. Using a pitch-shift paradigm, the pitch of their vocal feedback was unexpectedly shifted 650 or 6100 cents during sustained vocalization of the vowel sound/u/. Compensatory vocal F0 response magnitudes and latencies to pitch feedback perturbations were examined. A significant effect of age was found such that response magnitudes increased with increasing age until maximal values were reached for adults 51–60 years of age and then decreased for adults 61–75 years of age. Adults 51–60 years of age were also more sensitive to the direction and magnitude of the pitch feedback perturbations compared to younger adults. Conclusion: These findings demonstrate that the pitch-shift reflex systematically changes across the adult lifespan. Understanding aging-related changes to the role of auditory feedback is critically important for our theoretica

    Human Auditory Cortical Activation during Self-Vocalization

    Get PDF
    During speaking, auditory feedback is used to adjust vocalizations. The brain systems mediating this integrative ability have been investigated using a wide range of experimental strategies. In this report we examined how vocalization alters speech-sound processing within auditory cortex by directly recording evoked responses to vocalizations and playback stimuli using intracranial electrodes implanted in neurosurgery patients. Several new findings resulted from these high-resolution invasive recordings in human subjects. Suppressive effects of vocalization were found to occur only within circumscribed areas of auditory cortex. In addition, at a smaller number of sites, the opposite pattern was seen; cortical responses were enhanced during vocalization. This increase in activity was reflected in high gamma power changes, but was not evident in the averaged evoked potential waveforms. These new findings support forward models for vocal control in which efference copies of premotor cortex activity modulate sub-regions of auditory cortex

    Predicting Global Ground Geoelectric Field With Coupled Geospace and Three-Dimensional Geomagnetic Induction Models

    No full text
    We forecast the global effects of space weather on the geoelectric and geomagnetic fields using a novel combination of methods. We use a realistic three-dimensional (3-D) model of Earth's electrical conductivity and a realistic representation of magnetospheric and ionospheric current systems. Our scheme involves the following steps: (1) We run a global magnetohydrodynamic model of the magnetosphere coupled to an electrostatic model of the ionosphere. (2) We calculate a global time series of the ground magnetic field resulting from the ionospheric, field-aligned, and magnetospheric currents of the global magnetohydrodynamic model. (3) We approximate this external field by an equivalent source current flowing in a thin shell above Earth. (4) We calculate a global time series of geoelectric and geomagnetic fields from the equivalent current and a 3-D conductivity model of Earth that also takes into account the coast effect due to large horizontal conductivity gradient. We verify our implementation by comparing the results against known analytic and numeric solutions, and then apply our scheme to the geomagnetic storm of 14 and 15 December 2006. In particular, we show that accounting for 3-D structure of Earth's conductivity results in significantly enhanced geoelectric field at large lateral gradients of conductivity, especially in coastal regions, both at middle and high latitudes. In the studied geomagnetic storm the largest values of 3-D geoelectric field are detected at high latitudes reaching 2.5 volts per kilometer and the 3-D effect extends inland by a few hundred kilometers
    • …
    corecore