26 research outputs found

    The effect of obesity on spirometry tests among healthy non-smoking adults

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The effects of obesity on pulmonary functions have not been addressed previously among Saudi population. We aim to study the effects of obesity on spirometry tests among healthy non-smoking adults.</p> <p>Methods</p> <p>A cross sectional study conducted among volunteers healthy non-smoking adults Subjects. We divided the subjects into two groups according to their BMI. The first group consisted of non-obese subjects with BMI of 18 to 24.9 kg/m2 and the second group consisted of obese subjects with BMI of 30 kg/m2 and above. Subjects underwent spirometry tests according to American thoracic society standards with measurement of the following values: the forced vital capacity (FVC), forced expiratory volume in one second (FEV1), peak expiratory flow rate (PEF) and forced mid-expiratory flow (FEF25-75).</p> <p>Results</p> <p>The total subjects were 294 with a mean age of 32 years. There were 178 males and 116 females subjects. We found no significant differences in FEV1 (p value = 0.686), FVC (p value = 0.733), FEV1/FVC Ratio (p value = 0.197) and FEF25-75 (p value = 0.693) between the obese and non-obese subjects. However, there was significantly difference in PEF between the two groups (p value < 0.020).</p> <p>Conclusion</p> <p>Obesity does not have effect on the spirometry tests (except PEF) among health non-smoking adults. We recommend searching for alternative diagnosis in case of findings abnormal spirometry tests results among obese subjects.</p

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved
    corecore