13 research outputs found

    Common pathways by which non-native forest insects move internationally and domestically

    Get PDF
    International trade and movement of people are largely responsible for increasing numbers of non-native insect introductions to new environments. For forest insects, trade in live plants and transport of wood packaging material (WPM) are considered the most important pathways facilitating long-distance invasions. These two pathways as well as trade in firewood, logs, and processed wood are commonly associated with insect infestations, while “hitchhiking” insects can be moved on cargo, in the conveyances used for transport (e.g., containers, ships), or associated with international movement of passengers and mail. Once established in a new country, insects can spread domestically through all of the above pathways. Considerable national and international efforts have been made in recent years to reduce the risk of international movement of plant pests. International Standards for Phytosanitary Measures (ISPMs) No. 15 (WPM), 36 (plants for planting), and 39 (wood) are examples of phytosanitary standards that have been adopted by the International Plant Protection Convention to reduce risks of invasions of forest pests. The implementation of ISPMs by exporting countries is expected to reduce the arrival rate and establishments of new forest pests. However, many challenges remain to reduce pest transportation through international trade, given the ever-increasing volume of traded goods, variations in quarantine procedures between countries, and rapid changes in distribution networks. It is therefore likely that many more human-assisted invasions of forest insects will take place. New geographic expansions by natural modes are also made possible due to changes in host distribution and/or climate.http://link.springer.com/journal/103402020-01-01hj2018Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles

    Get PDF
    We provide an overview of both traditional and innovative control tools for management of three Xylosandrus ambrosia beetles (Coleoptera: Curculionidae: Scolytinae), invasive species with a history of damage in forests, nurseries, orchards and urban areas. Xylosandrus compactus, X. crassiusculus and X. germanus are native to Asia, and currently established in several countries around the globe. Adult females bore galleries into the plant xylem inoculating mutualistic ambrosia fungi that serve as food source for the developing progeny. Tunneling activity results in chewed wood extrusion from entry holes, sap outflow, foliage wilting followed by canopy dieback, and branch and trunk necrosis. Maintaining plant health by reducing physiological stress is the first recommendation for long-term control. Baited traps, ethanol-treated bolts, trap logs and trap trees of selected species can be used to monitor Xylosandrus species. Conventional pest control methods are mostly ineffective against Xylosandrus beetles because of the pests’ broad host range and rapid spread. Due to challenges with conventional control, more innovative control approaches are being tested, such as the optimization of the push–pull strategy based on specific attractant and repellent combinations, or the use of insecticide-treated netting. Biological control based on the release of entomopathogenic and mycoparasitic fungi, as well as the use of antagonistic bacteria, has yielded promising results. However, these technologies still require validation in real field conditions. Overall, we suggest that management efforts should primarily focus on reducing plant stress and potentially be combined with a multi-faceted approach for controlling Xylosandrus damage

    Proposal of AISC-compliant seismic design criteria for ductile partially-restrained end-plate bolted joints

    No full text
    AISC358–16 provides seismic pre-qualification rules and design procedures for fully restrained extended stiffened end-plate bolted connections, while the cases of partially restrained connections are generally not considered for seismic applications. However, provided that the failure of both bolts and the welds is prevented, partially restrained joints may exhibit satisfactory ductile behavior, also accommodating interstory drift rotation larger than 0.04 rad. This performance can be achieved if the resistance of brittle zones of the connections is greater than the ultimate resistance of the ductile components, as experimentally proved in some recent European research projects. Therefore, the study presented in this article aims at proposing design rules for partially restrained connections in order to meet the prequalification limits given by AISC358–16. To achieve this purpose, a comprehensive parametric study based on finite element analysis (FEAs) was carried out. The numerical results show that the proposed AISC-compliant procedure can guarantee satisfactory performance of partially restrained connections, which exhibit good ductility and dissipation capacity

    Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles

    Get PDF
    We provide an overview of both traditional and innovative control tools for management of three Xylosandrus ambrosia beetles (Coleoptera: Curculionidae: Scolytinae), invasive species with a history of damage in forests, nurseries, orchards and urban areas. Xylosandrus compactus, X. crassiusculus and X. germanus are native to Asia, and currently established in several countries around the globe. Adult females bore galleries into the plant xylem inoculating mutualistic ambrosia fungi that serve as food source for the developing progeny. Tunneling activity results in chewed wood extrusion from entry holes, sap outflow, foliage wilting followed by canopy dieback, and branch and trunk necrosis. Maintaining plant health by reducing physiological stress is the first recommendation for long-term control. Baited traps, ethanol-treated bolts, trap logs and trap trees of selected species can be used to monitor Xylosandrus species. Conventional pest control methods are mostly ineffective against Xylosandrus beetles because of the pests’ broad host range and rapid spread. Due to challenges with conventional control, more innovative control approaches are being tested, such as the optimization of the push–pull strategy based on specific attractant and repellent combinations, or the use of insecticide-treated netting. Biological control based on the release of entomopathogenic and mycoparasitic fungi, as well as the use of antagonistic bacteria, has yielded promising results. However, these technologies still require validation in real field conditions. Overall, we suggest that management efforts should primarily focus on reducing plant stress and potentially be combined with a multi-faceted approach for controlling Xylosandrus damage.This research was supported by the University of Catania (Project Emergent Pests and Pathogens and Relative Sustainable Strategies - 5A722192113; PhD fellowship to AG). P.H.W.B. was supported by the German Research Foundation (DFG Emmy Noether Grant BI 1956/1–1). Funding to MGW: USDA-NIFA, ARS and APHIS; ISDA Hatch; Hawaii Dept. of Agriculture. JH and YL were funded by the USDA APHIS and USDA Forest Service. HK was partially supported by Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research, KAKENHI, Nos. 18KK0180, 19H02994 and 20H03026). KH was partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes, Brazil; Finance code 001). Open access funding provided by Università degli Studi di Catania within the CRUI-CARE Agreement

    Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles

    No full text
    corecore