73 research outputs found
R.Raspet, "General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections
Theoretical treatments of thermoacoustics have been reported for stacks with circular pore and parallel plate geometries. A general linear formulation is developed for gas-filled thermoacoustic elements such as heat exchangers, stacks, and tubes having pores of arbitrary cross-sectional geometry. For compactness in the following, F represents the functional form of the transverse variation of the longitudinal particle velocity. Generally, F is a function of frequency, pore geometry, the response functions and transport coefficients of the gas used, and the ambient value of the gas density. Expressions are developed for the acoustic temperature, density, particle velocity, pressure, heat flow, and work flow from knowledge of F. Heat and work flows are compared in the short stack approximation for stacks consisting of parallel plates, circular, square, and equilateral triangular pores. In this approximation, heat and work flows are found to be greatest for the parallel plate stack geometry. Pressure and specific acoustic impedance translation theorems are derived to simplify computation of the acoustical field quantities at all points within a thermoacoustic engine. Relations with capillary-pore-based porous media models are developed
Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis.
The activation of caspases represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Multiple pathways leading to caspase activation appear to exist and vary depending on the death-inducing stimulus. We demonstrate that the activation of caspase-3, in Jurkat cells stimulated to undergo apoptosis by a Fas-independent pathway, is catalyzed by caspase-6. Caspase-6 was found to co-purify with caspase-3 as part of a multiprotein activation complex from extracts of camptothecin-treated Jurkat cells. A biochemical analysis of the protein constituents of the activation complex showed that Hsp60 was also present. Furthermore, an interaction between Hsp60 and caspase-3 could be demonstrated by co-immunoprecipitation experiments using HeLa as well as Jurkat cell extracts. Using a reconstituted in vitro system, Hsp60 was able to substantially accelerate the maturation of procaspase-3 by different upstream activator caspases and this effect was dependent on ATP hydrolysis. We propose that the ATP-dependent 'foldase' activity of Hsp60 improves the vulnerability of pro-caspase-3 to proteolytic maturation by upstream caspases and that this represents an important regulatory event in apoptotic cell death
- …