254 research outputs found

    The collagenic structure of human digital skin seen by scanning electron microscopy after Ohtani maceration technique.

    Get PDF
    We performed a morphological scanning electron microscope (SEM) study to describe the fine structure and disposition of collagenous tissue in the human toe. After therapeutic amputation of a human right Leg, we applied the Othani maceration technique to the skin of three toes surgically explanted from the foot. We distinguished eight cutaneous regions and focused on some specialized collagenous structures differing in the thickness of the skin. The eight areas investigated were: the dorsal skin, the eponychium, the perionychium, the hyponychium, the region under the visible nail, the nail root, the plantar skin and finally the toe tip. Each of these areas is characterized by a distinctive collagenous surface disposition, with some peculiar features mostly related to dermal. papillae. At high magnification, we observed the spatial arrangement of the cottagen fibers constituting the top of the dermal, papillae that represents the attachment site of the proliferative basal layer of the epidermis. We also noted an impressive density of collagen fibers throughout the thickness of the dermal layer, organized in specialized structures and constituting the skeleton of dermal, thermoreceptorial corpuscles or sweat glands. A combination of SEM and Ohtani technique disclosed the three-dimensional architecture of the collagenous matrix of tarsal skin under physiologic conditions, giving a detailed description of the most reactive tissue during pathologic processes

    Type 2 Diabetes Mellitus and COVID-19: A Narrative Review

    Get PDF
    The pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has involved more than one hundred million individuals, including more than two million deaths. Diabetes represents one of the most prevalent chronic conditions worldwide and significantly increases the risk of hospitalization and death in COVID-19 patients. In this review, we discuss the prevalence, the pathophysiological mechanisms, and the outcomes of COVID-19 infection in people with diabetes. We propose a rationale for using drugs prescribed in patients with diabetes and some pragmatic clinical recommendations to deal with COVID-19 in this kind of patient

    CLINICIAN-PATIENT RELATIONSHIP AND ADHERENCE TO TREATMENT

    Get PDF
    PATIENT'S ADHERENCE TO TREATMENT IS STRONGLY RELATED TO CLINICIAN'S ABILITY.ROLE OF EMPATHY, OF COMMUNICATION'S SKILLS ARE NOT INVESTIGATED ENOUGH, EVEN IF ACCORDING TO PATIENT'S OPINION THESE ABILITY ARE MORE IMPORTANT OF TECHNICAL SKILLS

    Plexiform vascular structures in the human digital dermal layer: a SEM-corrosion casting morphological study

    Get PDF
    This study aimed to describe the impressive diversity of vascular plexiform structures of the hypodermal layer of human skin. We chose the human body site with the highest concentration of dermal corpuscles, the human digit, and processed it with the corrosion casting technique and scanning electron microscopy analysis (SEM). This approach proved to be the best tool to study these microvascular architectures, free from any interference by surrounding tissues. We took high-definition pictures of the vascular network of sweat glands, thermoreceptorial and tactile corpuscles, the vessels constituting the glomic bodies and those feeding the hair follicles. We observed that the three-dimensional disposition of these vessels strictly depends on the shape of the corpuscles supplied. We could see the tubular vascularization of the excretory duct of sweat glands and the ovoid one feeding their bodies, sometimes made up of two lobes. In some cases, knowledge of these morphological data regarding the normal disposition in space and intrinsic vascularization structure of the dermal corpuscles can help to explain many of the physiopathological changes occurring during chronic microangiopathic diseases

    Immunological characteristics of non-intensive care hospitalized COVID-19 patients: A preliminary report

    Get PDF
    Abstract: The outbreak of coronavirus disease 2019 (COVID-19) is posing a threat to global health. This disease has different clinical manifestations and different outcomes. The immune response to the novel 2019 coronavirus is complex and involves both innate and adaptive immunity. In this context, cell-mediated immunity plays a vital role in effective immunity against SARS-CoV-2. Significant differences have been observed when comparing severe and non-severe patients. Since these immunological characteristics have not been fully elucidated, we aimed to use cluster analysis to investigate the immune cell patterns in patients with COVID-19 who required hospitalization but not intensive care. We identified four clusters of different immunological patterns, the worst being characterized by total lymphocytes, T helper lymphocytes CD4+ (CD4+ ), T cytotoxic lymphocytes CD8+ (CD8+ ) and natural killer (NK) cells below the normal range, together with natural killer lymphocyte granzyme < 50% (NK granzyme+ ) and antibody-secreting plasma cells (ASCs) equal to 0 with fatal outcomes. In the worst group, 50% of patients died in the intensive care unit. Moreover, a negative trend was found among four groups regarding total lymphocytes, CD4+ , CD8+ and B lymphocytes (p < 0.001, p < 0.005, p < 0.000, p < 0.044, respectively). This detailed analysis of immune changes may have prognostic value. It may provide a new perspective for identifying subsets of COVID-19 patients and selecting novel prospective treatment strategies. Notwithstanding these results, this is a preliminary report with a small sample size, and our data may not be generalizable. Further cohort studies with larger samples are necessary to quantify the prognostic value’s weight, according to immunological changes in COVID-19 patients, for predicting prognoses and realizing improvements in clinical conditions

    The collagenic architecture of human dura mater: Laboratory investigation

    Get PDF
    Object. Human dura mater is the most external meningeal sheet surrounding the CNS. It provides an efficient protection to intracranial structures and represents the most important site for CSF turnover. Its intrinsic architecture is made up of fibrous tissue including collagenic and elastic fibers that guarantee the maintenance of its biophysical features. The recent technical advances in the repair of dural defects have allowed for the creation of many synthetic and biological grafts. However, no detailed studies on the 3D microscopic disposition of collagenic fibers in dura mater are available. The authors report on the collagenic 3D architecture of normal dura mater highlighting the orientation, disposition in 3 dimensions, and shape of the collagen fibers with respect to the observed layer. Methods. Thirty-two dura mater specimens were collected during cranial decompressive surgical procedures, fixed in 2.5% Karnovsky solution, and digested in 1 N NaOH solution. After a routine procedure, the specimens were observed using a scanning electron microscope. Results. The authors distinguished the following 5 layers in the fibrous dura mater of varying thicknesses, orientation, and structures: bone surface, external median, vascular, internal median, and arachnoid layers. Conclusions. The description of the ultrastructural 3D organization of the different layers of dura mater will give us more information for the creation of synthetic grafts that are as similar as possible to normal dura mater. This description will be also related to the study of the neoplastic invasion

    Comparison of minimally invasive parathyroidectomy under local anaesthesia and minimally invasive video-assisted parathyroidectomy for primary hyperparathyroidism: A cost analysis

    Get PDF
    Background: Primary hyperparathyroidism (PHPT) origins from a solitary adenoma in 70-95% of cases. Moreover, the advances in methods for localizing an abnormal parathyroid gland made minimally invasive techniques more prominent. This study presents a micro-cost analysis of two parathyroidectomy techniques. Patients and methods: 72 consecutive patients who underwent minimally invasive parathyroidectomy, video-assisted (MIVAP, group A, 52 patients) or "open" under local anaesthesia (OMIP, group B, 20 patients) for PHPT were reviewed. Operating room, consumable, anaesthesia, maintenance costs, equipment depreciation and surgeons/anaesthesiologists fees were evaluated. The patient's satisfaction and the rate of conversion to conventional parathyroidectomy were investigated. T-Student's, Kolmogorov-Smirnov tests and Odds Ratio were used for statistical analysis. Results: 1 patient of the group A and 2 of the group B were excluded from the cost analysis because of the conversion to the conventional technique. Concerning the remnant patients, the overall average costs were: for Operative Room, 1186,69 \u20ac for the MIVAP group (51 patients) and 836,11 \u20ac for the OMIP group (p<0,001); for the Team, 122,93 \u20ac (group A) and 90,02 \u20ac (group B) (p<0,001); the other operative costs were 1388,32 \u20ac (group A) and 928,23 \u20ac (group B) (p<0,001). The patient's satisfaction was very strongly in favour of the group B (Odds Ratio 20,5 with a 95% confidence interval). Conclusions: MIVAP is more expensive compared to the "open" parathyroidectomy under local anaesthesia due to the costs of general anaesthesia and the longer operative time. Moreover, the patients generally prefer the local anaesthesia. Nevertheless, the rate of conversion to the conventional parathyroidectomy was relevant in the group of the local anaesthesia compared to the MIVAP, since the latter allows a four-gland exploration

    Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome

    Get PDF
    Neurogenesis impairment is considered a major determinant of the intellectual disability that characterizes Down syndrome (DS), a genetic condition caused by triplication of chromosome 21. Previous evidence obtained in the Ts65Dn mouse model of DS showed that the triplicated gene APP (amyloid precursor protein) is critically involved in neurogenesis alterations. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain) resulting from APP cleavage by gamma-secretase increase the transcription of Ptch1, a Sonic Hedgehog (Shh) receptor that keeps the mitogenic Shh pathway repressed. Previous evidence showed that neonatal treatment with ELND006, an inhibitor of gamma-secretase, reinstates the Shh pathway and fully restores neurogenesis in Ts65Dn pups. In the framework of potential therapies for DS, it is extremely important to establish whether the positive effects of early intervention are retained after treatment cessation. Therefore, the goal of the current study was to establish whether early treatment with ELND006 leaves an enduring trace in the brain of Ts65Dn mice. Ts65Dn and euploid pups were treated with ELND006 in the postnatal period P3-P15 and the outcome of treatment was examined at ~&nbsp;one month after treatment cessation. We found that in treated Ts65Dn mice the pool of proliferating cells in the hippocampal dentate gyrus (DG) and total number of granule neurons were still restored as was the number of pre- and postsynaptic terminals in the stratum lucidum of CA3, the site of termination of the mossy fibers from the DG. Accordingly, patch-clamp recording from field CA3 showed functional normalization of the input to CA3. Unlike in field CA3, the number of pre- and postsynaptic terminals in the DG of treated Ts65Dn mice was no longer fully restored. The finding that many of the positive effects of neonatal treatment were retained after treatment cessation provides proof of principle demonstration of the efficacy of early inhibition of gamma-secretase for the improvement of brain development in DS

    Swallowing disorders after thyroidectomy: What we know and where we are. A systematic review

    Get PDF
    Introduction Dysphagia and hoarseness are possible complications that can be observed in patients undergoing thyroidectomy or other neck surgery procedures. These complaints are usually related to superior and inferior laryngeal nerves dysfunction, but these can appear even after uncomplicated surgical procedure. Methods We reviewed the current literature available on MEDLINE database, concerning the swallowing disorders appearing after the thyroidectomy. The articles included in the review reported pathophysiology and diagnostic concerns. Results Twenty articles were selected for inclusion in the review. Depends on the possible causes of the difficulty swallowing (related to nerve damage or appearing after uncomplicated thyroidectomy), different types of diagnostic procedures could be used to study patient discomfort, as well as intraoperative nerve monitoring, fiber optic laryngoscopy, endoscopy, pH monitoring, esophageal manometry and videofluorography. Among all these procedures, videofluorography is considered the gold standard to evaluate the entire swallowing process, since that allows a real-time study of all the three phases of swallowing: oral phase, pharyngeal phase and esophageal phase. Conclusion The diagnostic procedures described can help to identify the mechanisms involved in swallowing disorders, with the aim to choose the best therapeutic option. More studies are needed for understanding the causes of the dysphagia appearing after thyroidectomy
    corecore