12,531 research outputs found

    Discrete Nonlinear Schr{\"o}dinger Breathers in a Phonon Bath

    Full text link
    We study the dynamics of the discrete nonlinear Schr{\"o}dinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this {\em non-Gibbsian} state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather

    Nonparametric Bayesian Mixed-effect Model: a Sparse Gaussian Process Approach

    Full text link
    Multi-task learning models using Gaussian processes (GP) have been developed and successfully applied in various applications. The main difficulty with this approach is the computational cost of inference using the union of examples from all tasks. Therefore sparse solutions, that avoid using the entire data directly and instead use a set of informative "representatives" are desirable. The paper investigates this problem for the grouped mixed-effect GP model where each individual response is given by a fixed-effect, taken from one of a set of unknown groups, plus a random individual effect function that captures variations among individuals. Such models have been widely used in previous work but no sparse solutions have been developed. The paper presents the first sparse solution for such problems, showing how the sparse approximation can be obtained by maximizing a variational lower bound on the marginal likelihood, generalizing ideas from single-task Gaussian processes to handle the mixed-effect model as well as grouping. Experiments using artificial and real data validate the approach showing that it can recover the performance of inference with the full sample, that it outperforms baseline methods, and that it outperforms state of the art sparse solutions for other multi-task GP formulations.Comment: Preliminary version appeared in ECML201

    Bulk and surface magnetoinductive breathers in binary metamaterials

    Full text link
    We study theoretically the existence of bulk and surface discrete breathers in a one-dimensional magnetic metamaterial comprised of a periodic binary array of split-ring resonators. The two types of resonators differ in the size of their slits and this leads to different resonant frequencies. In the framework of the rotating-wave approximation (RWA) we construct several types of breather excitations for both the energy-conserved and the dissipative-driven systems by continuation of trivial breather solutions from the anticontinuous limit to finite couplings. Numerically-exact computations that integrate the full model equations confirm the quality of the RWA results. Moreover, it is demonstrated that discrete breathers can spontaneously appear in the dissipative-driven system as a results of a fundamental instability.Comment: 10 pages, 16 figure

    SLE-type growth processes and the Yang-Lee singularity

    Full text link
    The recently introduced SLE growth processes are based on conformal maps from an open and simply-connected subset of the upper half-plane to the half-plane itself. We generalize this by considering a hierarchy of stochastic evolutions mapping open and simply-connected subsets of smaller and smaller fractions of the upper half-plane to these fractions themselves. The evolutions are all driven by one-dimensional Brownian motion. Ordinary SLE appears at grade one in the hierarchy. At grade two we find a direct correspondence to conformal field theory through the explicit construction of a level-four null vector in a highest-weight module of the Virasoro algebra. This conformal field theory has central charge c=-22/5 and is associated to the Yang-Lee singularity. Our construction may thus offer a novel description of this statistical model.Comment: 12 pages, LaTeX, v2: thorough revision with corrections, v3: version to be publishe

    Magnetoinductive breathers in magnetic metamaterials

    Full text link
    The existence and stability of discrete breathers (DBs) in one-dimensional and two-dimensional magnetic metamaterials (MMs), which consist of periodic arrangem ents (arrays) of split-ring resonators (SRRs), is investigated numerically. We consider different configurations of the SRR arrays, which are related to the relative orientation of the SRRs in the MM, both in one and two spatial dimensions. In the latter case we also consider anisotropic MMs. Using standard numerical methods we construct several types of linearly stable breather excitations both in Hamiltonian and dissipative MMs (dissipative breathers). The study of stability in both cases is performed using standard Floquet analysi s. In both cases we found that the increase of dimensionality from one to two spatial dimensions does not destroy the DBs, which may also exist in the case of moderate anisotropy (in two dimensions). In dissipative MMs, the dynamics is governed by a power balance between the mainly Ohmic dissipation and driving by an alternating magnetic field. In that case it is demonstrated that DB excitation locally alters the magnetic response of MMs from paramagnetic to diamagnetic. Moreover, when the frequency of the applied field approaches the SRR resonance frequency, the magnetic response of the MM in the region of the DB excitation may even become negative (extreme diamagnetic).Comment: 12 pages 15 figure

    Research study of some RAM antennas Final report, 18 Nov. 1964 - 18 Jun. 1965

    Get PDF
    Input impedance and radiation pattern determinations for cylindrical gap, waveguide excited and circular waveguide slot antenna array

    Extreme events in discrete nonlinear lattices

    Full text link
    We perform statistical analysis on discrete nonlinear waves generated though modulational instability in the context of the Salerno model that interpolates between the intergable Ablowitz-Ladik (AL) equation and the nonintegrable discrete nonlinear Schrodinger (DNLS) equation. We focus on extreme events in the form of discrete rogue or freak waves that may arise as a result of rapid coalescence of discrete breathers or other nonlinear interaction processes. We find power law dependence in the wave amplitude distribution accompanied by an enhanced probability for freak events close to the integrable limit of the equation. A characteristic peak in the extreme event probability appears that is attributed to the onset of interaction of the discrete solitons of the AL equation and the accompanied transition from the local to the global stochasticity monitored through the positive Lyapunov exponent of a nonlinear map.Comment: 5 pages, 4 figures; reference added, figure 2 correcte

    Solvable Critical Dense Polymers

    Get PDF
    A lattice model of critical dense polymers is solved exactly for finite strips. The model is the first member of the principal series of the recently introduced logarithmic minimal models. The key to the solution is a functional equation in the form of an inversion identity satisfied by the commuting double-row transfer matrices. This is established directly in the planar Temperley-Lieb algebra and holds independently of the space of link states on which the transfer matrices act. Different sectors are obtained by acting on link states with s-1 defects where s=1,2,3,... is an extended Kac label. The bulk and boundary free energies and finite-size corrections are obtained from the Euler-Maclaurin formula. The eigenvalues of the transfer matrix are classified by the physical combinatorics of the patterns of zeros in the complex spectral-parameter plane. This yields a selection rule for the physically relevant solutions to the inversion identity and explicit finitized characters for the associated quasi-rational representations. In particular, in the scaling limit, we confirm the central charge c=-2 and conformal weights Delta_s=((2-s)^2-1)/8 for s=1,2,3,.... We also discuss a diagrammatic implementation of fusion and show with examples how indecomposable representations arise. We examine the structure of these representations and present a conjecture for the general fusion rules within our framework.Comment: 35 pages, v2: comments and references adde

    Quantum transport in carbon nanotubes

    Get PDF
    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a very low level.Comment: In press at Reviews of Modern Physics. 68 pages, 55 figure
    corecore