12,277 research outputs found

    Bent-Double Radio Sources as Probes of Intergalactic Gas

    Full text link
    As the most common environment in the universe, groups of galaxies are likely to contain a significant fraction of the missing baryons in the form of intergalactic gas. The density of this gas is an important factor in whether ram pressure stripping and strangulation affect the evolution of galaxies in these systems. We present a method for measuring the density of intergalactic gas using bent-double radio sources that is independent of temperature, making it complementary to current absorption line measurements. We use this method to probe intergalactic gas in two different environments: inside a small group of galaxies as well as outside of a larger group at a 2 Mpc radius and measure total gas densities of 4±12+6×1034 \pm 1_{-2}^{+6} \times 10^{-3} and 9±35+10×1049 \pm 3_{-5}^{+10} \times 10^{-4} per cubic centimeter (random and systematic errors) respectively. We use X-ray data to place an upper limit of 2×1062 \times 10^6 K on the temperature of the intragroup gas in the small group.Comment: 6 pages, 1 figure, accepted for publication in Ap

    Whole-rotation dry matter and nitrogen grain yields from the first course of an organic farming crop rotation experiment

    Get PDF
    The possibilities for increasing total grain yield in organic cereal production through manipulation of crop rotation design were investigated in a field experiment on different soil types in Denmark from 1997 to 2000. Three experimental factors were included in the experiment in a factorial design: 1) proportion of grass-clover and pulses in the rotation, 2) catch crop (with and without), and 3) manure (with and without). Three four-course rotations were compared. Two of the rotations had one year of grass-clover as a green manure crop, either followed by spring wheat or by winter wheat. The grass-clover was replaced by winter cereals in the third rotation. Animal manure was applied as slurry in rates corresponding to 40% of the nitrogen (N) demand of the cereal crops. Rotational grain yields of the cereal and pulse crops were calculated by summing yields for each plot over the four years in the rotation. The rotational yields were affected by all experimental factors (rotation, manure and catch crop). However, the largest effects on both dry matter and N yields were caused by differences between sites caused by differences in soils, climate and cropping history. The rotation without a green manure crop produced the greatest total yield. Dry matter and N yields in this rotation were about 10% higher than in the rotation with a grass-clover ley in one year of four. Therefore, the yield benefits from the grass-clover ley could not compensate for the yield reduction as a result of leaving 25% of the rotation out of production. There were no differences in dry matter and N yields in grains between the rotations, where either spring or winter cereals followed the grass-clover ley. The N use efficiency for ammonium-N in the applied manure corresponded to that obtained from N in commercial fertilizer. There were only very small yield benefits from the use of catch crops. However, this may change over time as fertility builds up in the system with catch crops

    Critical Current 0-π\pi Transition in Designed Josephson Quantum Dot Junctions

    Full text link
    We report on quantum dot based Josephson junctions designed specifically for measuring the supercurrent. From high-accuracy fitting of the current-voltage characteristics we determine the full magnitude of the supercurrent (critical current). Strong gate modulation of the critical current is observed through several consecutive Coulomb blockade oscillations. The critical current crosses zero close to, but not at, resonance due to the so-called 0-π\pi transition in agreement with a simple theoretical model.Comment: 5 pages, 4 figures, (Supplementary information available at http://www.fys.ku.dk/~hij/public/nl_supp.pdf

    Single wall carbon nanotube double quantum dot

    Full text link
    We report on two top-gate defined, coupled quantum dots in a semiconducting single wall carbon nanotube, constituting a tunable double quantum dot system. The single wall carbon nanotubes are contacted by titanium electrodes, and gated by three narrow top-gate electrodes as well as a back-gate. We show that a bias spectroscopy plot on just one of the two quantum dots can be used to extract the addition energy of both quantum dots. Furthermore, honeycomb charge stability diagrams are analyzed by an electrostatic capacitor model that includes cross capacitances, and we extract the coupling energy of the double quantum dot.Comment: Published in Applied Physics Letters 4 December 2006. http://link.aip.org/link/?APL/89/23211

    Quantum transport in carbon nanotubes

    Get PDF
    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a very low level.Comment: In press at Reviews of Modern Physics. 68 pages, 55 figure

    Singlet-Triplet Physics and Shell Filling in Carbon Nanotube Double Quantum Dots

    Full text link
    An artifcial two-atomic molecule, also called a double quantum dot (DQD), is an ideal system for exploring few electron physics. Spin-entanglement between just two electrons can be explored in such systems where singlet and triplet states are accessible. These two spin-states can be regarded as the two states in a quantum two-state system, a so-called singlet-triplet qubit. A very attractive material for realizing spin based qubits is the carbon nanotube (CNT), because it is expected to have a very long spin coherence time. Here we show the existence of a gate-tunable singlet-triplet qubit in a CNT DQD. We show that the CNT DQD has clear shell structures of both four and eight electrons, with the singlet-triplet qubit present in the four-electron shells. We furthermore observe inelastic cotunneling via the singlet and triplet states, which we use to probe the splitting between singlet and triplet, in good agreement with theory.Comment: Supplement available at: http://www.fys.ku.dk/~hij/public/singlet-triple_supp.pd

    X-Ray Emission from the Warm Hot Intergalactic Medium

    Full text link
    The number of detected baryons in the Universe at z<0.5 is much smaller than predicted by standard big bang nucleosynthesis and by the detailed observation of the Lyman alpha forest at red-shift z=2. Hydrodynamical simulations indicate that a large fraction of the baryons today is expected to be in a ``warm-hot'' (10^5-10^7K) filamentary gas, distributed in the intergalactic medium. This gas, if it exists, should be observable only in the soft X-ray and UV bands. Using the predictions of a particular hydrodynamic model, we simulated the expected X-ray flux as a function of energy in the 0.1-2 keV band due to the Warm-Hot Intergalactic Medium (WHIM), and compared it with the flux from local and high red-shift diffuse components. Our results show that as much as 20% of the total diffuse X-ray background (DXB) in the energy range 0.37-0.925keV could be due to X-ray flux from the WHIM, 70% of which comes from filaments at redshift z between 0.1 and 0.6. Simulations done using a FOV of 3', comparable with that of Suzaku and Constellation-X, show that in more than 20% of the observations we expect the WHIM flux to contribute to more than 20% of the DXB. These simulations also show that in about 10% of all the observations a single bright filament in the FOV accounts, alone, for more than 20% of the DXB flux. Red-shifted oxygen lines should be clearly visible in these observations.Comment: 19 pages, 6 figure

    Singular Choices for Multiple Choice

    Get PDF
    We revisit and evolve Frandsen and Schwartzbach's axiomatic scoring strategy for multiple-choice exams that credits partial knowledge and levels out guessing.The evolved scoring strategy equalizes the implicit weight of each question by default and makes this weight an optional parameter for each question.Partial credit can also be modulated, which provides a measure of the spread of knowledge of the examinee.Based on a decade of experience in a first-year university course, we find the evolved exams to be more understandable and predictible both for the examiner and for the examinees.Finally, we present a family of scoring functions that fit the model

    Perilesional Linear Atrophic Streaks Associated with Intralesional Corticosteroid Injections in a Psoriatic Plaque

    Full text link
    Perilymphatic atrophy can be a complication of intralesional corticosteroid injections given for the treatment of conditions such as psoriasis, alopecia areata, and keloids, and intraarticular corticosteroid injections given in diseases such as rheumatoid arthritis. It may become manifest as perilesional linear, depigmented, atrophic streaks, which are usually most prominent in patients with dark-colored skin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73661/1/j.1525-1470.1987.tb00790.x.pd
    corecore