7,811 research outputs found

    Models for energy and charge transport and storage in biomolecules

    Full text link
    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.Comment: 12 pages (latex), 12 figures (ps

    Une méthodologie générale de comparaison de modèles d'estimation régionale de crue

    Get PDF
    L'estimation du débit QT de période de retour T en un site est généralement effectuée par ajustement d'une distribution statistique aux données de débit maximum annuel de ce site. Cependant, l'estimation en un site où l'on dispose de peu ou d'aucune données hydrologiques doit être effectuée par des méthodes régionales qui consistent à utiliser l'information existante en des sites hydrologiquement semblables au site cible. Cette procédure est effectuée en deux étapes: (a) détermination des sites hydrologiquemcnt semblables(b) estimation régionalePour un découpage donné (étape a), nous proposons trois approches méthodologiques pour comparer les différentes méthodes d'estimation régionale. Ces approches sont décrites en détail dans ce travail. Plus particulièrement il s'agit de- simulation par la méthode du bootstrap - analyse de régression ou Bayes empirique - méthode bayésienne hiérarchiqueEstimation of design flows with a given return period is a common problem in hydrologic practice. At sites where data have been recorded during a number of years, such an estimation can be accomplished by fitting a statistical distribution to the series of annual maximum floods and then computing the (1-1/T) -quantile in the estimated distribution. However, frequently there are no, or only few, data available at the site of interest, and flood estimation must then be based on regional information. In general, regional flood frequency analysis involves two major steps:- determination of a set of gauging stations that are assumed to contain information pertinent to the site of interest. This is referred to as delineation of homogeneous regions.- estimation of the design flood at the target site based on information from the sites ofthe homogeneous region.The merits of regional flood frequency analysis, at ungauged sites as well as at sites where some local information is available, are increasingly being acknowledged, and many research papers have addressed the issue. New methods for delitneating regions and for estimating floods based on regional information have been proposed in the last decade, but scientists tend to focus on the development of new techniques rather than on testing existing ones. The aim ofthis paper is to suggest methodologies for comparing different regional estimation alternatives.The concept of homogeneous regions has been employed for a long time in hydrology, but a rigorous detinition of it has never been given. Usually, the homogeneity concerns dimensionless statistical characteristics of hydrological variables such as the coefficient of variation (Cv) and the coefficient of skewness (Cs) of annual flood series. A homogeneous region can then be thought of as a collection of stations with flood series whose statistical properties, except forscale, are not significantly different from the regional mean values. Tests based on L-moments are at present much applied for validating the homogeneity of a given region. Early approaches to regional flood frequency analysis were based on geographical regions, but recent tendencies are to deline homogeneous regions from the similarity of basins in the space of catchment characteristics which are related to hydrologic characteristics. Cluster analysis can be used to group similar sites, but has the disadvantage that a site in the vicinity ofthe cluster border may be closer to sites in other clusters than to those ofits ovm group. Burn (1990a, b) has recently suggested a method where each site has its owm homogeneous region (or region of influence) in which it is located at the centre of gravity.Once a homogeneous region has been delineated, a regional estimation method must be selected. The index flood method, proposed by Dalrymple (1960), and the direct regression method are among the most commonly used procedures. Cunnane (1988) provides an overview of several other methods. The general performance of a regional estimation method depends on the amount of regional information (hydrological as well as physiographical and climatic), and the size and homogeneity of the region considered relevant to the target site. Being strongly data-dependent, comparisons of regional models will be valid on a local scale only. Hence, one cannot expect to reach a general conclusion regarding the relative performance of different models, although some insight may be gained from case studies.Here, we present methodologies for comparing regional flood frequency procedures (combination of homogeneous regions and estimation methods) for ungauged sites. Hydrological, physiographical and climatic data are assumed to be available at a large number of sites, because a comparison of regional models must be based on real data. The premises of these methodologies are that at each gauged site in the collection of stations considered, one can obtain an unbiased atsite estimate of a given flood quantile, and that the variance of this estimate is known. Regional estimators, obtained by ignoring the hydrological data at the target site, are then compared to the at-site estimate. Three difrerent methodologies are considered in this study:A) Bootstrap simulation of hydrologic dataIn order to preserve spatial correlation of hydrologic data (which may have an important impact on regional flood frequency procedures), we suggest performing bootstrap simulation of vectors rather than scalar values. Each vector corresponds to a year for which data are available at one or more sites in the considered selection of stations; the elements ofthe vectors are the different sites. For a given generated data scenario, an at-site estimate and a regional estimate at each site considered can be calculated. As a performance index for a given regional model, one can use, for example, the average (over sites and bootstrap scenarios) relative deviation ofthe regional estimator from the at-site estimator.B) Regression analysisThe key idea in this methodology is to perform a regression analysis with a regional estimator as an explanatory variable and the unknown quantile, estimated by the at-site method, as the dependent variable. It is reasonable to assume a linear relation between the true quantiles and the regional estimators. The estimated regression coeflicients express the systematic error, or bias, of a given regional procedure, and the model error, estimated for instance by the method of moments, is a measure of its variance. It is preferable that the bias and the variance be as small as possible, suggesting that these quantities be used to order different regional procedures.C) Hierarchical Bayes analysisThe regression method employed in (B) can also be regarded as the resultfrom an empirical Bayes analysis in which point estimates of regression coeflicients and model error are obtained. For several reasons, it may be advantageous to proceed with a complete Bayesian analysis in which bias and model error are considered as uncertain quantities, described by a non-informative prior distribution. Combination of the prior distribution and the likelihood function yields through Bayes, theorem the posterior distribution of bias and model error. In order to compare different regional models, one can then calculate for example the mean or the mode of this distribution and use these values as perfonnance indices, or one can compute the posterior loss

    Light bullets in quadratic media with normal dispersion at the second harmonic

    Full text link
    Stable two- and three-dimensional spatiotemporal solitons (STSs) in second-harmonic-generating media are found in the case of normal dispersion at the second harmonic (SH). This result, surprising from the theoretical viewpoint, opens a way for experimental realization of STSs. An analytical estimate for the existence of STSs is derived, and full results, including a complete stability diagram, are obtained in a numerical form. STSs withstand not only the normal SH dispersion, but also finite walk-off between the harmonics, and readily self-trap from a Gaussian pulse launched at the fundamental frequency.Comment: 4 pages, 5 figures, accepted to Phys. Rev. Let

    Optimism and Physical Health: A Meta-analytic Review

    Get PDF
    Background—Prior research links optimism to physical health, but the strength of the association has not been systematically evaluated. Purpose—The purpose of this study is to conduct a meta-analytic review to determine the strength of the association between optimism and physical health. Methods—The findings from 83 studies, with 108 effect sizes (ESs), were included in the analyses, using random-effects models. Results—Overall, the mean ES characterizing the relationship between optimism and physical health outcomes was 0.17, p<.001. ESs were larger for studies using subjective (versus objective) measures of physical health. Subsidiary analyses were also conducted grouping studies into those that focused solely on mortality, survival, cardiovascular outcomes, physiological markers (including immune function), immune function only, cancer outcomes, outcomes related to pregnancy, physical symptoms, or pain. In each case, optimism was a significant predictor of health outcomes or markers, all p<.001. Conclusions—Optimism is a significant predictor of positive physical health outcomes

    Revue bibliographique des méthodes de prévision des débits

    Get PDF
    Dans le domaine de la prévision des débits, une grande variété de méthodes sont disponibles: des modèles stochastiques et conceptuels mais aussi des approches plus novatrices telles que les réseaux de neurones artificiels, les modèles à base de règles floues, la méthode des k plus proches voisins, la régression floue et les splines de régression. Après avoir effectué une revue détaillée de ces méthodes et de leurs applications récentes, nous proposons une classification qui permet de mettre en lumière les différences mais aussi les ressemblances entre ces approches. Elles sont ensuite comparées pour les problèmes différents de la prévision à court, moyen et long terme. Les recommandations que nous effectuons varient aussi avec le niveau d'information a priori. Par exemple, lorsque l'on dispose de séries chronologiques stationnaires de longue durée, nous recommandons l'emploi de la méthode non paramétrique des k plus proches voisins pour les prévisions à court et moyen terme. Au contraire, pour la prévision à plus long terme à partir d'un nombre restreint d'observations, nous suggérons l'emploi d'un modèle conceptuel couplé à un modèle météorologique basé sur l'historique. Bien que l'emphase soit mise sur le problème de la prévision des débits, une grande partie de cette revue, principalement celle traitant des modèles empiriques, est aussi pertinente pour la prévision d'autres variables.A large number of models are available for streamflow forecasting. In this paper we classify and compare nine types of models for short, medium and long-term flow forecasting, according to six criteria: 1. validity of underlying hypotheses, 2. difficulties encountered when building and calibrating the model, 3. difficulties in computing the forecasts, 4. uncertainty modeling, 5. information required by each type of model, and 6. parameter updating. We first distinguish between empirical and conceptual models, the difference being that conceptual models correspond to simplified representations of the watershed, while empirical model only try to capture the structural relationships between inputs to the watershed and outputs, such as streamflow. Amongst empirical models, we distinguish between stochastic models, i.e. models based on the theory of probability, and non-stochastic models. Three types of stochastic models are presented: statistical regression models, Box-Jenkins models, and the nonparametric k-nearest neighbor method. Statistical linear regression is only applicable for long term forecasting (monthly flows, for example), since it requires independent and identically distributed observations. It is a simple method of forecasting, and its hypotheses can be validated a posteriori if sufficient data are available. Box-Jenkins models include linear autoregressive models (AR), linear moving average models (MA), linear autoregressive - moving average models (ARMA), periodic ARMA models (PARMA) and ARMA models with auxiliary inputs (ARMAX). They are more adapted for weekly or daily flow forecasting, since the yallow for the explicit modeling of time dependence. Efficient methods are available for designing the model and updating the parameters as more data become available. For both statistical linear regression and Box-Jenkins models, the inputs must be uncorrelated and linearly related to the output. Furthermore, the process must be stationary. When it is suspected that the inputs are correlated or have a nonlinear effect on the output, the k-nearest neighbor method may be considered. This data-based nonparametric approach simply consists in looking, among past observations of the process, for the k events which are most similar to the present situation. A forecast is then built from the flows which were observed for these k events. Obviously, this approach requires a large database and a stationary process. Furthermore, the time required to calibrate the model and compute the forecasts increases rapidly with the size of the database. A clear advantage of stochastic models is that forecast uncertainty may be quantified by constructing a confidence interval. Three types of non-stochastic empirical models are also discussed: artificial neural networks (ANN), fuzzy linear regression and multivariate adaptive regression splines (MARS). ANNs were originally designed as simple conceptual models of the brain. However, for forecasting purposes, these models can be thought of simply as a subset of non linear empirical models. In fact, the ANN model most commonly used in forecasting, a multi-layer feed-forward network, corresponds to a non linear autoregressive model (NAR). To capture the moving average components of a time series, it is necessary to use recurrent architectures. ANNs are difficult to design and calibrate, and the computation of forecasts is also complex. Fuzzy linear regression makes it possible to extract linear relationships from small data sets, with fewer hypotheses than statistical linear regression. It does not require the observations to be uncorrelated, nor does it ask for the error variance to be homogeneous. However, the model is very sensitive to outliers. Furthermore, a posteriori validation of the hypothesis of linearity is not possible for small data sets. MARS models are based on the hypothesis that time series are chaotic instead of stochastic. The main advantage of the method is its ability to model non-stationary processes. The approach is non-parametric, and therefore requires a large data set.Amongst conceptual models, we distinguish between physical models, hydraulic machines, and fuzzy rule-based systems. Most conceptual hydrologic models are hydraulic machines, in which the watershed is considered to behave like a network of reservoirs. Physical modeling of a watershed would imply using fundamental physical equations at a small scale, such as the law of conservation of mass. Given the complexity of a watershed, this can be done in practice only for water routing. Consequently, only short term flow forecasts can be obtained from a physical model, since the effects of precipitation, infiltration and evaporation must be negligible. Fuzzy rule-based systems make it possible to model the water cycle using fuzzy IF-THEN rules, such as IF it rains a lot in a short period of time, THEN there will be a large flow increase following the concentration time. Each fuzzy quantifier is modeled using a fuzzy number to take into account the uncertainty surrounding it. When sufficient data are available, the fuzzy quantifiers can be constructed from the data. In general, conceptual models require more effort to develop than empirical models. However, for exceptional events, conceptual models can often provide more realistic forecasts, since empirical models are not well suited for extrapolation.A fruitful approach is to combine conceptual and empirical models. One way of doing this, called extended streamflow prediction or ESP, is to combine a stochastic model for generating meteorological scenarios with a conceptual model of the watershed.Based on this review of flow forecasting models, we recommend for short term forecasting (hourly and daily flows) the use of the k-nearest neighbor method, Box-Jenkins models, water routing models or hydraulic machines. For medium term forecasting (weekly flows, for example), we recommend the k-nearest neighbor method and Box-Jenkins models, as well as fuzzy-rule based and ESP models. For long term forecasting (monthly flows), we recommend statistical and fuzzy regression, Box-Jenkins, MARS and ESP models. It is important to choose a type of model which is appropriate for the problem at hand and for which the information available is sufficient. Each type of model having its advantages, it can be more efficient to combine different approaches when forecasting streamflow

    Structurally specific thermal fluctuations identify functional sites for DNA transcription

    Full text link
    We report results showing that thermally-induced openings of double stranded DNA coincide with the location of functionally relevant sites for transcription. Investigating both viral and bacterial DNA gene promoter segments, we found that the most probable opening occurs at the transcription start site. Minor openings appear to be related to other regulatory sites. Our results suggest that coherent thermal fluctuations play an important role in the initiation of transcription. Essential elements of the dynamics, in addition to sequence specificity, are nonlinearity and entropy, provided by local base-pair constraints
    corecore