4,486 research outputs found

    Advanced automation in space shuttle mission control

    Get PDF
    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems

    Healing Length and Bubble Formation in DNA

    Full text link
    We have recently suggested that the probability for the formation of thermally activated DNA bubbles is, to a very good approximation, proportional to the number of soft AT pairs over a length L(n) that depend on the size nn of the bubble and on the temperature of the DNA. Here we clarify the physical interpretation of this length by relating it to the (healing) length that is required for the effect of a base-pair defect to become neligible. This provides a simple criteria to calculate L(n) for bubbles of arbitrary size and for any temperature of the DNA. We verify our findings by exact calculations of the equilibrium statistical properties of the Peyrard-Bishop-Dauxois model. Our method permits calculations of equilibrium thermal openings with several order of magnitude less numerical expense as compared with direct evaluations

    Lengthscales and Cooperativity in DNA Bubble Formation

    Full text link
    It appears that thermally activated DNA bubbles of different sizes play central roles in important genetic processes. Here we show that the probability for the formation of such bubbles is regulated by the number of soft AT pairs in specific regions with lengths which at physiological temperatures are of the order of (but not equal to) the size of the bubble. The analysis is based on the Peyrard- Bishop-Dauxois model, whose equilibrium statistical properties have been accurately calculated here with a transfer integral approach

    Cause-specific child mortality in a mountainous community in Pakistan by verbal autopsy

    Get PDF
    In Pakistan\u27s rural areas population-based cause of death data from systematic verbal autopsies are rare. Using verbal autopsy algorithms with multiple coding and decision rules, we assigned causes of death among 79% of children under age five years dying between July, 1988 and December, 1991 in Oshikhandass, a remote mountainous community in Pakistan\u27s Northern Areas. Main causes of death were pneumonia (44%), diarrhoea (35%), and neonatal sepsis (6%). Combined (main plus associated) analysis revealed 48% died with diarrhoea, 46% with malnutrition, 44% with pneumonia, 15% with neonatal sepsis, and 15% with low birth weight. Median age of death with pneumonia was 2 months, with diarrhoea 8 months. Half died by month 4. The inquiry was well received by villagers. Population-based verbal autopsy surveillance is a cost-effective strategy to guide health managers. Plans are underway to institute it for the surrounding population of 400,000. Creative ways to access, treat and reduce risk among young infants are needed

    W-extended Kac representations and integrable boundary conditions in the logarithmic minimal models WLM(1,p)

    Full text link
    We construct new Yang-Baxter integrable boundary conditions in the lattice approach to the logarithmic minimal model WLM(1,p) giving rise to reducible yet indecomposable representations of rank 1 in the continuum scaling limit. We interpret these W-extended Kac representations as finitely-generated W-extended Feigin-Fuchs modules over the triplet W-algebra W(p). The W-extended fusion rules of these representations are inferred from the recently conjectured Virasoro fusion rules of the Kac representations in the underlying logarithmic minimal model LM(1,p). We also introduce the modules contragredient to the W-extended Kac modules and work out the correspondingly-extended fusion algebra. Our results are in accordance with the Kazhdan-Lusztig dual of tensor products of modules over the restricted quantum universal enveloping algebra Uˉq(sl2)\bar{U}_q(sl_2) at q=eπi/pq=e^{\pi i/p}. Finally, polynomial fusion rings isomorphic with the various fusion algebras are determined, and the corresponding Grothendieck ring of characters is identified.Comment: 28 page

    The flow of plasma in the solar terrestrial environment

    Get PDF
    The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence
    • …
    corecore