12 research outputs found

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Full text link
    BACKGROUND Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVES We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 +/- 19.2 years) recruited from 29 international centers. RESULTS At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% +/- 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of <= 35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation

    Fatal giant cell myocarditis in a patient with multiple autoimmune disorders

    No full text
    A case of circulatory collapse due to severe heart failure is reported in a 52-year old male with autoimmune disorders in the form of type-1 diabetes, Graves’ disease and total alopecia

    Human pluripotent stem cell line (HDZi001-A) derived from a patient carrying the ARVC-5 associated mutation TMEM43-p.S358L

    No full text
    Arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC-5) is a dominantly inherited cardiomyopathy caused by the mutation TMEM43-p.S358L. An induced pluripotent stem cell (iPSC) line (HDZi001-A) from an adult male mutation carrier was generated, using the CytoTune Sendai Kit. The resulting iPSCs carried the mutation TMEM43-p.S358L, had a normal morphology, a stable karyotype and were positive for the expression of pluripotency markers. This iPSC line can be differentiated into the three germ layers and might be a useful model for the characterization of ARVC-5 associated pathomechanism

    Incidence and predictors of worsening heart failure in patients with wild‐type transthyretin cardiac amyloidosis

    No full text
    Abstract Background Prognostic markers of survival have been identified in wild‐type transthyretin amyloidosis (ATTRwt), but limited data exist with respect to hospitalizations with worsening heart failure (WHF). Predictive markers of WHF have yet to be identified. Methods From April 2017 to February 2021, 104 patients with ATTRwt were diagnosed and prospectively followed from the time of diagnosis to the time of death or the censoring date of 1 February 2021. Baseline patient characteristics, biomarkers, and advanced echocardiography were used to predict hospitalization with WHF. Results During the median follow‐up period of 23 months, 51% of patients were hospitalized due to WHF. Seventy‐three per cent of patients with WHF were admitted at least twice. Patients with WHF during the first year had significantly poorer survival (P < 0.001). Independent predictors of WHF during follow‐up were pacemaker implantation prior to diagnosis (PMI, P = 0.037) and right atrial volume index (RAVi, P = 0.008). Patients with PMI had a higher left ventricular mass index and poorer left ventricular and right ventricular systolic function indicating a more advanced stage of amyloid disease. Conclusions A high incidence and recurrence of hospital admissions with WHF were demonstrated in contemporary patients with ATTRwt, which was associated with reduced survival. Patients with pacemaker devices prior to ATTRwt diagnosis experienced more frequent hospitalizations with WHF. PMI and right atrial enlargement were identified as independent predictors of WHF during follow‐up

    The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    No full text
    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that heterozygosity for the nonsense mutation causes NMD degradation of the mutant transcripts blocking expression of the truncated mutant protein and an additional trans effect on lamin A protein levels expressed from the wild type allele. We discuss the possibility that skewing of the lamin A to lamin C ratio may contribute to ensuing processes that destabilize cardiomyocytes and trigger cardiomyopath

    The TMEM43 Newfoundland mutation p.S358L causing ARVC-5 was imported from Europe and increases the stiffness of the cell nucleus

    No full text
    Aims Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetic condition caused predominantly by mutations within desmosomal genes. The mutation leading to ARVC-5 was recently identified on the island of Newfoundland and caused by the fully penetrant missense mutation p.S358L in TMEM43. Although TMEM43-p.S358L mutation carriers were also found in the USA, Germany, and Denmark, the genetic relationship between North American and European patients and the disease mechanism of this mutation remained to be clarified. Methods and results We screened 22 unrelated ARVC patients without mutations in desmosomal genes and identified the TMEM43-p.S358L mutation in a German ARVC family. We excluded TMEM43-p.S358L in 22 unrelated patients with dilated cardiomyopathy. The German family shares a common haplotype with those from Newfoundland, USA, and Denmark, suggesting that the mutation originated from a common founder. Examination of 40 control chromosomes revealed an estimated age of 1300-1500 years for the mutation, which proves the European origin of the Newfoundland mutation. Skin fibroblasts from a female and two male mutation carriers were analysed in cell culture using atomic force microscopy and revealed that the cell nuclei exhibit an increased stiffness compared with TMEM43 wild-type controls. Conclusion The German family is not affected by a de novo TMEM43 mutation. It is therefore expected that an unknown number of European families may be affected by the TMEM43-p.S358L founder mutation. Due to its deleterious clinical phenotype, this mutation should be checked in any case of ARVC-related genotyping. It appears that the increased stiffness of the cell nucleus might be related to the massive loss of cardiomyocytes, which is typically found in ventricles of ARVC hearts
    corecore