15,255 research outputs found

    Tho2 dispersion-strengthened ni and ni-mo alloys produced by selective reduction

    Get PDF
    Preparation of nickel-thorium-molybdenum alloys by selective hydrogen reduction metho

    Note on SLE and logarithmic CFT

    Full text link
    It is discussed how stochastic evolutions may be linked to logarithmic conformal field theory. This introduces an extension of the stochastic Loewner evolutions. Based on the existence of a logarithmic null vector in an indecomposable highest-weight module of the Virasoro algebra, the representation theory of the logarithmic conformal field theory is related to entities conserved in mean under the stochastic process.Comment: 10 pages, LaTeX, v2: version to be publishe

    Stochastic evolutions in superspace and superconformal field theory

    Full text link
    Some stochastic evolutions of conformal maps can be described by SLE and may be linked to conformal field theory via stochastic differential equations and singular vectors in highest-weight modules of the Virasoro algebra. Here we discuss how this may be extended to superconformal maps of N=1 superspace with links to superconformal field theory and singular vectors of the N=1 superconformal algebra in the Neveu-Schwarz sector.Comment: 13 pages, LaTe

    Absence of Wavepacket Diffusion in Disordered Nonlinear Systems

    Full text link
    We study the spreading of an initially localized wavepacket in two nonlinear chains (discrete nonlinear Schroedinger and quartic Klein-Gordon) with disorder. Previous studies suggest that there are many initial conditions such that the second moment of the norm and energy density distributions diverge as a function of time. We find that the participation number of a wavepacket does not diverge simultaneously. We prove this result analytically for norm-conserving models and strong enough nonlinearity. After long times the dynamical state consists of a distribution of nondecaying yet interacting normal modes. The Fourier spectrum shows quasiperiodic dynamics. Assuming this result holds for any initially localized wavepacket, a limit profile for the norm/energy distribution with infinite second moment should exist in all cases which rules out the possibility of slow energy diffusion (subdiffusion). This limit profile could be a quasiperiodic solution (KAM torus)

    Minor parties and independents in times of change: Scottish local elections 1974 to 2007

    Get PDF
    This article explores the electoral performance of minor party and Independent candidates in Scottish local elections from 1974 to 2007. This is a period which began with a major restructuring of local government and ended with a change in the electoral system from first-past-the-post to the single transferable vote. It encompasses a second restructuring in the 1990s, the consolidation of the Scottish National Party as an electoral force, and the creation of the Scottish Parliament. Throughout the period, while there have been ebbs and flows, Independents and minor parties have remained significant players in local electoral politics in Scotland

    Simulation of transition dynamics to high confinement in fusion plasmas

    Get PDF
    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in close agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particularly, the slow transition with an intermediate dithering phase is well reproduced by the numerical solutions. Additionally, the model reproduces the experimentally determined L-H transition power threshold scaling that the ion power threshold increases with increasing particle density. The results hold promise for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors

    Discovery of a very extended X-ray halo around a quiescent spiral galaxy - the "missing link" of galaxy formation

    Full text link
    Hot gaseous haloes surrounding galaxies and extending well beyond the distribution of stars are a ubiquitous prediction of galaxy formation scenarios. The haloes are believed to consist of gravitationally trapped gas with a temperature of millions of Kelvin. The existence of such hot haloes around massive elliptical galaxies has been established through their X-ray emission. While gas out-flowing from starburst spiral galaxies has been detected, searches for hot haloes around normal, quiescent spiral galaxies have so far failed, casting doubts on the fundamental physics in galaxy formation models. Here we present the first detection of a hot, large-scale gaseous halo surrounding a normal, quiescent spiral galaxy, NGC 5746, alleviating a long-standing problem for galaxy formation models. In contrast to starburst galaxies, where the X-ray halo can be powered by the supernova energy, there is no such power source in NGC 5746. The only compelling explanation is that we are here witnessing a galaxy forming from gradually in-flowing hot and dilute halo gas.Comment: New Astronomy, in pres

    Nonparametric Bayesian Mixed-effect Model: a Sparse Gaussian Process Approach

    Full text link
    Multi-task learning models using Gaussian processes (GP) have been developed and successfully applied in various applications. The main difficulty with this approach is the computational cost of inference using the union of examples from all tasks. Therefore sparse solutions, that avoid using the entire data directly and instead use a set of informative "representatives" are desirable. The paper investigates this problem for the grouped mixed-effect GP model where each individual response is given by a fixed-effect, taken from one of a set of unknown groups, plus a random individual effect function that captures variations among individuals. Such models have been widely used in previous work but no sparse solutions have been developed. The paper presents the first sparse solution for such problems, showing how the sparse approximation can be obtained by maximizing a variational lower bound on the marginal likelihood, generalizing ideas from single-task Gaussian processes to handle the mixed-effect model as well as grouping. Experiments using artificial and real data validate the approach showing that it can recover the performance of inference with the full sample, that it outperforms baseline methods, and that it outperforms state of the art sparse solutions for other multi-task GP formulations.Comment: Preliminary version appeared in ECML201
    • 

    corecore