6 research outputs found

    Endotoxemia Is Associated with Altered Innate and Adaptive Immune Responses in Untreated HIV-1 Infected Individuals

    Get PDF
    BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies) and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10) with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC) from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA) were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART), 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our results suggest that microbial translocation may be associated with innate and adaptive immune dysfunction in untreated HIV infection

    Short-course Toll-like receptor 9 agonist treatment impacts innate immunity and plasma viremia in individuals with human immunodeficiency virus infection

    No full text
    Background. Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo. Methods. We conducted a single-arm, open-label study in which 15 virologically suppressed HIV-1-infected individuals on antiretroviral therapy received 60 mg MGN1703 subcutaneously twice weekly for 4 weeks. We characterized plasmacytoid dendritic cell, natural killer (NK), and T-cell activation using flow cytometry on baseline and after 4 weeks of treatment. HIV-1 transcription was quantified by measuring plasma HIV-1 RNA during MGN1703 administration. Results. In accordance with the cell type-specific expression of TLR9, MGN1703 treatment led to pronounced activation of plasmacytoid dendritic cells and substantial increases in plasma interferon-alpha 2 levels (P 1500 copies/mL (range, 21-1571 copies/mL) during treatment. Conclusions. TLR9 agonist treatment in HIV infection has a dual potential by increasing HIV-1 transcription and enhancing cytotoxic NK cell activation, both of which are key outcomes in HIV-1 eradication therapy

    HIV Antibody Fc N-Linked Glycosylation Is Associated with Viral Rebound

    No full text
    © 2020 The Authors Changes in antibody glycosylation are linked to inflammation across several diseases. Alterations in bulk antibody galactosylation can predict rheumatic flares, act as a sensor for immune activation, predict gastric cancer relapse, track with biological age, shift with vaccination, change with HIV reservoir size on therapy, and decrease in HIV and HCV infections. However, whether changes in antibody Fc biology also track with reservoir rebound time remains unclear. The identification of a biomarker that could forecast viral rebound time could significantly accelerate the downselection and iterative improvement of promising HIV viral eradication strategies. Using a comprehensive antibody Fc-profiling approach, the level of HIV-specific antibody Fc N-galactosylation is significantly associated with time to rebound after treatment discontinuation across three independent cohorts. Thus virus-specific antibody glycosylation may represent a promising, simply measured marker to track reservoir reactivation
    corecore