125 research outputs found

    Mixing and Homogenization in the Early Solar System: Clues from Sr, Ba, Nd, and Sm Isotopes in Meteorites

    Get PDF
    High-precision barium isotopic compositions of large samples of an ordinary chondrite and a eucrite are identical to the terrestrial values. In contrast, the carbonaceous chondrites reveal excesses in 135Ba and 137Ba of around +39 and +22 parts per million (ppm), respectively; no anomalies are resolvable in 130,132,138Ba. High-precision Sr isotopic compositions of all meteorites are identical within error. The data are consistent with the carbonaceous chondrites having an excess in the r-process 135,137Ba with respect to Earth, eucrite parent bodies, and ordinary chondrites. The carbonaceous chondrites, however, display no variation in the r- and s-process Sm and Nd isotopes, suggesting that the r-process sources of Ba and the lanthanides were decoupled. The homogeneity of Ba and Sm isotopes in the Earth, eucrite parent body, and ordinary chondrite indicates that the solar nebula that fed planetesimals between ~1 and ~2.4 AU was well mixed with respect to these isotopes. It was heterogeneous beyond ~2.7 AU where carbonaceous chondrite parent bodies formed. These observations also indicate that the best estimate of the Nd isotopic composition of the Earth is obtained from ordinary chondrites and not from carbonaceous chondrites, as is normally assumed. Since the terrestrial upper mantle shows a 142Nd anomaly of +18 ± 8 ppm with respect to the ordinary chondrites, this is further evidence that the upper mantle retains a memory of early Earth differentiation and sequestration of a reservoir with an average Sm/Nd ratio lower than that of chondrites

    Feature- and classification analysis for detection and classification of tongue movements from single-trial pre-movement EEG

    Get PDF
    Individuals with severe tetraplegia can benefit from brain-computer interfaces (BCIs). While most movement-related BCI systems focus on right/left hand and/or foot movements, very few studies have considered tongue movements to construct a multiclass BCI. The aim of this study was to decode four movement directions of the tongue (left, right, up, and down) from single-trial pre-movement EEG and provide a feature and classifier investigation. In offline analyses (from ten individuals without a disability) detection and classification were performed using temporal, spectral, entropy, and template features classified using either a linear discriminative analysis, support vector machine, random forest or multilayer perceptron classifiers. Besides the 4-class classification scenario, all possible 3-, and 2-class scenarios were tested to find the most discriminable movement type. The linear discriminant analysis achieved on average, higher classification accuracies for both movement detection and classification. The right- and down tongue movements provided the highest and lowest detection accuracy (95.3±4.3% and 91.7±4.8%), respectively. The 4-class classification achieved an accuracy of 62.6±7.2%, while the best 3-class classification (using left, right, and up movements) and 2-class classification (using left and right movements) achieved an accuracy of 75.6±8.4% and 87.7±8.0%, respectively. Using only a combination of the temporal and template feature groups provided further classification accuracy improvements. Presumably, this is because these feature groups utilize the movement-related cortical potentials, which are noticeably different on the left- versus right brain hemisphere for the different movements. This study shows that the cortical representation of the tongue is useful for extracting control signals for multi-class movement detection BCIs

    Manual 3D Control of an Assistive Robotic Manipulator Using Alpha Rhythms and an Auditory Menu:A Proof-of-Concept

    Get PDF
    Brain–Computer Interfaces (BCIs) have been regarded as potential tools for individuals with severe motor disabilities, such as those with amyotrophic lateral sclerosis, that render interfaces that rely on movement unusable. This study aims to develop a dependent BCI system for manual end-point control of a robotic arm. A proof-of-concept system was devised using parieto-occipital alpha wave modulation and a cyclic menu with auditory cues. Users choose a movement to be executed and asynchronously stop said action when necessary. Tolerance intervals allowed users to cancel or confirm actions. Eight able-bodied subjects used the system to perform a pick-and-place task. To investigate the potential learning effects, the experiment was conducted twice over the course of two consecutive days. Subjects obtained satisfactory completion rates (84.0 ± 15.0% and 74.4 ± 34.5% for the first and second day, respectively) and high path efficiency (88.9 ± 11.7% and 92.2 ± 9.6%). Subjects took on average 439.7 ± 203.3 s to complete each task, but the robot was only in motion 10% of the time. There was no significant difference in performance between both days. The developed control scheme provided users with intuitive control, but a considerable amount of time is spent waiting for the right target (auditory cue). Implementing other brain signals may increase its speed

    COVID-19 mortality attenuated during widespread Omicron transmission, Denmark, 2020 to 2022

    Get PDF
    BACKGROUND: It sparked considerable attention from international media when Denmark lifted restrictions against COVID-19 in February 2022 amidst widespread transmission of the new SARS-CoV-2 Omicron variant and a steep rise in reported COVID-19 mortality based on the 30-day COVID-19 death count. AIM: Our aim was to investigate how coincidental infections affected COVID-19 mortality estimates following the introduction of the Omicron variant in late 2021. METHODS: We compared the 30-day COVID-19 death count with the observed mortality using three alternative mortality estimation methods; (i) a mathematical model to correct the 30-day COVID-19 death count for coincidental deaths, (ii) the Causes of Death Registry (CDR) and (iii) all-cause excess mortality. RESULTS: There was a substantial peak in the 30-day COVID-19 death count following the emergence of the Omicron variant in late 2021. However, there was also a substantial change in the proportion of coincidental deaths, increasing from 10–20% to around 40% of the recorded COVID-19 deaths. The high number of 30-day COVID-19 deaths was not reflected in the number of COVID-19 deaths in the CDR and the all-cause excess mortality surveillance. CONCLUSION: Our analysis showed a distinct change in the mortality pattern following the introduction of Omicron in late 2021 with a markedly higher proportion of people estimated to have died with, rather than of, COVID-19 compared with mortality patterns observed earlier in the COVID-19 pandemic. Our findings highlight the importance of incorporating alternative mortality surveillance methods to more correctly estimate the burden of COVID-19 as the pandemic continues to evolve

    Seasonality of COVID-19

    Get PDF
    • …
    corecore