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Abstract—An assistive robotic manipulator (ARM) can 

provide independence and improve the quality of life for patients 

suffering from tetraplegia. However, to properly control such 

device to a satisfactory level without any motor functions requires 

a very high performing brain-computer interface (BCI). Steady-

state visual evoked potentials (SSVEP) based BCI are among the 

best performing. Thus, this study investigates the design of a 

system for a full workspace control of a 7 degrees of freedom 

ARM. A SSVEP signal is elicited by observing a visual stimulus 

flickering at a specific frequency and phase. This study 

investigates the best combination of unique frequencies and 

phases to provide a 16-target BCI by testing three different 

systems offline. Furthermore, a fourth system is developed to 

investigate the impact of the stimulating monitor refresh rate.  

Experiments conducted on two subjects suggest that a 16-target 

BCI created by four unique frequencies and 16-unique phases 

provide the best performance. Subject 1 reaches a maximum 

estimated ITR of 235 bits/min while subject 2 reaches 140 

bits/min. The findings suggest that the optimal SSVEP stimuli to 

generate 16 targets are a low number of frequencies and a high 

number of unique phases. Moreover, the findings do not suggest 

any need for considering the monitor refresh rate if stimuli are 

modulated using a sinusoidal signal sampled at the refresh rate.        

I. INTRODUCTION 

Studies show that an assistive robotic manipulator (ARM) 

can give tetraplegic patients more independence and improve 

their quality of life [1]–[3]. 
The best method for controlling the ARM depends on the 

severity of the disability; a joystick can be used if patients still 
have some residual motor functions in their upper extremities  
[1]. Similarly, the tongue can be used if all motor functions 
below the neck are lost [2]. However, when all motor functions 
are lost, the final option is a brain-computer interface (BCI) 
[3]. 

A BCI allows users to interact with a computer and/or a 
robot using only voluntarily produced brain activity, typically 
measured through electroencephalography (EEG). One of the 
fastest and most reliable BCI control signals is the steady-state 
visually evoked potential (SSVEP) [4]. In SSVEP-based BCI 
systems the user stimulates the brain activity by focusing on a 
frequency-specific flickering light which represents a specific 
action; this could be on a computer monitor or an LED.  The 
EEG signals measured (at especially the occipital lobe) will 
adopt the flickering frequency associated with the intended 
action, so the power at this frequency increases. This gives a 
fairly simple and accurate method of detecting the user 
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intentions [4]. It requires little to no user training to obtain BCI 
control with SSVEP. Thus, SSVEP may be a good choice for 
controlling external devices such as robotic arms or remotely 
controlled robots since good control is needed to control them 
satisfactorily [5].  

The performance of a BCI is typically measured as 
accuracy or information transfer rate (ITR) [5], [6]. A high ITR 
allow the user to better exploit the functionality of the assistive 
devices such as an ARM with several degrees of freedom or a 
wheelchair [7]. Three parameters can be adjusted to improve 
the ITR. A decrease of the transfer time, increasing the system 
accuracy, and/or increasing the number of available 
targets/classes [5]. 

To fully control an ARM, a high number of targets are 
required which possess a technical challenge. When using 
Boolean logic (i.e. switching between on/off states to create 
the different targets), a light source can only allow frequencies 
which resonate with its refresh rate [8]. Thus, the available 
(Boolean) frequencies for a 60 Hz computer monitor is: 

 
f
i
=

60

i
Hz                    i=1, 2,…, 60 (1) 

In the 6-16 Hz spectrum, which is the typical frequency 
spectrum for SSVEP [8]–[13], only 7 frequencies (i=4,..,10) 
are available; 6, 6.67, 7.5, 8.57, 10, 12 and 15 Hz. Furthermore, 
brain signals also carry higher harmonic frequencies [10], so 
resonating couples, such as 6 and 12 Hz, and 7.5 and 15 Hz 
should be avoided.  

Several schemes have been proposed to increase the 
number of targets when keeping the number of frequencies 
fixed.  Frequency sequential coding (presenting sequences of 
stimuli of varying frequencies) was used to create a unique 
stimuli sequence [14]–[16]. These allow for a high number of 
targets, but longer periods of stimulation are required. 

The use of phase lag of the stimuli is yet another way to 
increase the number of targets in SSVEP [8]–[11], [17]. Jia et 
al. designed a 15 target BCI using 3 frequencies; 10, 12 and 15 
Hz with 6, 5 and 4 phases, respectively [8]. The phases were 
determined by shifting the signal by one monitor frame period. 
The maximum quantity of signals within the 6-16 Hz 
frequency band for a 60 Hz monitor was therefore the 49 
signals shown in Fig. 1.  
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By modulating the luminance of an LCD monitor to follow 
a sinusoidal signal sampled at the monitor refresh rate, rather 
than a Boolean on/off modulation, it is possible to achieve a 
much smaller phase interval [9], thus achieving even more 
unique targets.  

The sinusoidal sampled modulation has since been used to 
create stimuli which do not resonate with the monitor refresh 
rate [10]. With this technique, a BCI-speller with 40 targets 
was created wherein each target represented both a unique 
frequency and phase called joint frequency-phase modulation 
(JFPM). The BCI achieved a mean ITR of 264bits/min which 
is among the best performing to date. 

However, while Chen et al. postulated that all frequencies 
can be properly stimulated [10], the consequence of using 
frequencies independent of the refresh rate is to the authors 
knowledge yet to be confirmed. Nakanishi et al. showed that 
the amplitude of a 12 Hz signals was enhanced when using a 
120 Hz monitor opposed to a 75 Hz, which indicates that the 
refresh rate is indeed an important consideration [12].  

This is further illustrated in Fig. 2 that shows the main 
difference between a 12- and 13 Hz sinusoidal signal sampled 
at 60 Hz. The signal is cut into consecutive segments of time 
length equal to the period of the signal frequency. As the 12 
Hz signal is periodic within 5 periods of the 60 Hz refresh rate 
(i.e. all segments will be equal).  This is not the case for a 13 
Hz signal as 13 Hz do not resonate with 60 Hz. Each segment 
will in this case lag the previous with 6.4 ms for 13 Hz.  

How this will influence the EEG signal is unknown; and 
has to the authors knowledge never been investigated. This 

paper therefore investigates if higher accuracies can be 
achieved when frequencies are kept Boolean-compatible. 

The developed BCI in this work will be designed with the 
purpose for control of a 6 DoF robotic arm with a 1 DoF end-
effector; thus requiring 14 actions for full workspace control. 
With the inclusion of 2 menu-dedicated actions, a requirement 
of 16 targets for full interface control exists.      

A 16-target BCI system can be build using several 
combinations of unique frequencies and phases. Fig.  3 shows 
three examples of how these combinations can be made. 
System A was designed as in Chen et al. with a unique 
frequency and phase for every target [10]. System B and C are 
designed with fewer unique frequencies, thus having a higher 
frequency interval and using phase to ensure target 
uniqueness. Fewer unique frequencies would lead to better 
discrimination between adjacent frequencies. 

 A shorter training time is also expected when using fewer 
unique frequencies as this has been shown for similar BCI 
systems [18]. It will be investigated if it is indeed beneficial to 
assign each target a unique frequency and phase as done by 
Chen et al. [10], or if similar results can be achieved by using 

Figure 2. Frame boolean switching control for a 60 Hz monitor at frequencies 

fk and timed lag tn. The black boxes indicate an off-frame, while the white 

boxes indicate an on-frame.  

 
 

Figure 2. Six consecutive periods of 12 or 13 Hz stimulus, at a 60 Hz 

refresh rate. The 12 Hz signal is periodic within 5 periods of the 60 Hz 

sampling, why all 12 Hz-segments are equal. Each segment of the 13 Hz 

signal lags the previous with 6.4ms.   

 
 

Figure 3. Three examples of a 16-target BCI system design setup. System A, System B and C have 16, 8 and 4 unique 

frequencies respectively. Targets can also have a unique phase, but targets with the same frequency must have different phases.   

 
 



  

fewer unique frequencies as done by Jia et al. [8] and 
Wittevrongel and Hulle [11].  

The aim of this study is to determine if there exist a 
difference in achievable BCI accuracy and ITR when varying 
the number of unique frequencies and unique phases, 
represented in this study as the three systems in Fig. 3. In 
addition, the effect of having monitor refresh rate resonating 
and non-resonating stimuli is investigated.    

II. METHODS 

A fourth system (system D) is created similarly to system 
C with the difference being that system D uses monitor refresh 
rate resonating frequencies. System A and system B cannot be 
replicated with only refresh rate resonating frequencies since 
they require too many unique frequencies.  The four 16-target 
systems are investigated:  

 System A: 16 targets, using 16 refresh rate non-
resonating frequencies. 

 System B: 16 targets, using eight refresh rate non-
resonating frequencies, with at least two unique 
phases to differentiate between targets using the same 
frequency. 

 System C: 16 targets, using four refresh rate non-
resonating frequencies, with at least four unique 
phases to differentiate between targets using the same 
frequency. 

 System D: 16 targets, using four refresh rate 
resonating frequencies, with at least four unique 
phases to differentiate between targets using the same 
frequency. 

System A used 16 evenly spaced frequencies chosen as 
7.96 to 14.86 Hz in steps of 0.46 Hz. The frequencies used in 
system B and C were the best performing subset of frequencies 
(eight and four respectively) from system A.  

System D used the 60 Hz monitor refresh rate resonating 
frequencies; 8.57, 10, 12 and 15 Hz.  

All systems have phase lags between targets. System B, C, 
D need this to achieve 16 unique targets while system A use it 
to increase discrimination between adjacent frequencies. The 
phase lag between the targets is simulated offline as done by 
Chen et al. [10].  

A. Experiment 

The experiment was performed on two healthy subjects 
(male, 31 years and male, 25 years). Five second epochs EEG 
were measured at a 500 Hz sampling frequency from 9 
channels [P3, Pz, P4, PO3, POz, PO4, O1, Oz, O2] using an 
EEG amplifier (Nuamps Express, Neuroscan). The impedance 
of all electrodes was below 10kΩ throughout the experiment.  

The experiment was split into two tests. The first test 
stimulated the 16 evenly spaced frequencies used in systems 
A, B and C (system B and C use only 8 or 4 of these 16 
frequencies, respectively). The second test stimulated the four 
refresh rate resonating frequencies used in system D.   

A total of 20 trials were performed in each test, each 
consisting of all the stimulated frequencies appearing in a 

random sequence. The frequencies were sequentially 
presented as a single stimulus to avoid visual interference 
between neighboring stimuli. Fig. 4 shows the chosen 
stimulation design. It was decided to implement a fixation 
cross stimulating with an equivalent frequency, though having 
the inverted color. Each stimulus appeared for 5 seconds 
followed by a one second break before the next stimulus 
appeared. The subjects were allowed breaks between runs. 

The stimuli were created using the MATLAB addon 
Pscychtoolbox-3 [http://psychtoolbox.org/] and were 
displayed separately on a 17.3” LED backlit LCD monitor 
from a Lenovo G710 laptop, with a recorded monitor refresh 
rate of 60.006 Hz. It followed the sampled sinusoidal 
modulation procedure presented by Manyakov et al. [9].  

B. Spatiotemporal beamformer 

The spatiotemporal beamformer was chosen as classifier 
[11], [19], [20]. It is built on the spatial beamformer theory 
[21], and the stimulus-locked inter-trace correlation [13]. The 
beamformer is a weighted sum filter, calculated for every 
target k, given as:  

 y
k
=wk

Tsk (2) 

Where s denotes the investigated EEG segment of data, 
after transposing it to a spatiotemporal vector form, w is a 
beamformer weight value trained through a Linearly 
Constrained Minimum Variance problem, and y is the 
beamformer output representing the probability of a given 
target. The classification can be done by determining the target 
k with a maximum beamformer output.  

Previous studies using the SSVEP spatiotemporal 
beamformer have only studied 12 and 15 Hz frequencies [8], 
[18], and thus only considered frequencies outside the alpha 
wave frequency band (8-12 Hz) where high disturbance can 
exist. Other classification methods, such as the modified 
canonical correlation method used by Chen et al. [10], use 
higher harmonics to account for such alpha contamination and 
thus allow 8-12 Hz frequencies.  

 This study we used frequencies in the alpha wave band; 
therefore, the beamformer is modified by including higher 
harmonic frequencies. This is done by training a 
spatiotemporal beamformer for every n harmonic frequency 

Figure 4. Stimuli design in complete on and off state.  

 



  

(n=1, 2, ..., N), N being the highest order of included harmonic 
frequencies.  Eq. (2) was then modified to:  

 

y
k
=

1

N
 ∑wkn

T skn

N

n=1

  (3) 

This study used N=2, i.e. the 1st and 2nd harmonic 

frequencies were used.  

C. Signal processing and data segment extraction  

Two Butterworth zero-phase bandpass filters were used 
([7-16] Hz and [15.8-32] Hz) to capture either the 1st or 2nd 
harmonic frequencies, respectively. The five-second epochs 
were cut to 0.5 seconds by removing the last 4.5 seconds of 
each epoch. This was done to simulate a higher potential ITR, 
than what could be achieved with 4.5s epochs, and is a 
commonly used method for analysis an SSVEP based BCI 
system offline [10], [11], [13], [15]–[17].      

D. System optimization 

As system B and C are independent of the refresh rate it is 
possible to select the best combination of frequencies. 
Similarly, an optimal phase interval between targets will be 
made. 

1) Selection of frequencies 
An algorithm was designed to determine the optimal 

combination of frequencies for system B and C. At each 
iteration the algorithm evaluates the classification accuracy 
after removal of one of the M available frequencies. The target 
that causes the highest increase in accuracy after removal was 
then permanently removed. Subsequently, the algorithm was 
recalled with M-1 targets. This continues until only eight or 
four targets remain for system B or C, respectively. 

2) Selection of phases 
An optimal phase assignment is assigned to all four 

systems.  Note, system A only implements phase to increase 
variance between targets and thus the classification accuracy. 
The remaining systems require a phase variation between the 
equal frequencies to achieve 16 unique targets. 

A phase interval (Δθ) between adjacent frequencies was 
used to create the target phase (θ). The procedure is illustrated 
in Tab. I; (1) the targets were first sorted in terms of lowest to 
highest frequency. (2) The phase lags were then assigned each 
target. (3) The phase lags were normalized between 0 and 2π 
radians.  

To simulate a phase lag θ at a target with a frequency f, the 
0.5-second time window was lagged with t=θ/(2πf) seconds. 
I.e. instead of removing the last 4.5 seconds of an epoch, the 
first t seconds and last (4.5-t) seconds were removed. The 
system which yield the highest accuracy at a specific phase 
interval is considered to be the subject’s optimal system.    

3) System comparison 

The systems were compared in terms of accuracy and ITR.  

The ITR is calculated as [6]: 

 

ITR= 
log

2
(N) + Plog

2
(P)+(1-P) log

2
(

1-P
N-1

)

T
 

 

(4) 

Where N is the number of targets, P is the system accuracy 
and T is the total selection time. A stimulation time window of 
0.5 seconds was used on all above tests. Including a 0.5-second 
break between stimuli, as was done in [8]-[9], the total 
selection time is 1 second. The maximum theoretical ITR 
achievable, given a 1-second total selection time and 100% 
accuracy for this 16-target BCI is then 240 bit/min.  

Reported results are those obtained using the optimized 
systems, identified using all available data.  

III. RESULTS 

The result of the frequency selection procedure is shown in 
Fig. 5. Fig. 6 shows the result of the phase selection procedure. 
The final system performances are shown in Tab. II.  

A. Frequency evaluation 

Fig. 5 shows the accuracy increase after removal of a target 
with an assigned unique frequency. Subject 1 had a high 
accuracy (94%) at 16 targets which reaches 100% when the 
system has nine or less targets. Subject 2 had a lower 
performance of 40% at 16- and 95% at four targets.   

The accuracy was improved by using both 1st and 2nd 
harmonics (dashed lines in Fig. 5) compared to only using 1st 
harmonics (solid lines). Using only the 2nd harmonics (dotted 
lines) would generally also yield a higher accuracy compared 
to using only the 1st harmonics.  

B. Phase evaluation 

Fig. 6 shows the accuracies for the four systems at various 
phase intervals. Subject 1, who had high performance at 16 
frequencies, had the best performance when using System A 
(16 unique frequencies). Subject 2 had much greater 
performance using System C (4 unique frequencies). Both 
subjects had worse performance when using the refresh rate 
determined frequencies.    

Figure 5. Accuracy versus number of targets for subject 1 and 2. 

Solid lines are the estimated accuracy using 1st harmonics, doted lines 
use 2nd and dashed use both.  

 
 

 

TABLE I. The phase assignment using a phase interval Δθ 
between adjacent frequencies. Targets are sorted in terms of lowest to 

highest frequency, such that fi ≤ fi+1.  

Target 1 2 … 16 

Signal Frequency f0 f1 … f15 

Phase lag, θ 0 Δθ  … 15Δθ  

 



  

C. Performance evaluation 

 The optimal accuracies, estimated using both the 1st and 
2nd harmonics, and the corresponding ITR were calculated for 
each system and are shown in Tab. II. The best performing 
system for each subject is highlighted with bold font. Subject 
1 had the best performance when using system A but still had 
excellent performance when using either system B or C. 
Subject 2 had the best performance when using system C.  

IV. DISCUSSION 

This study investigated some of the design considerations 
made when designing a SSVEP-based BCI system. It focused 
on a 16-target BCI with the purpose of controlling a 7 DoF 
ARM in its full workspace as this will be attempted in our 
future work.   

In this study, better performance was achieved when using 
evenly spaced frequencies compared to the fixed resonating 
frequencies. The likely reason for this is that the high number 
of frequencies available allowed a selection of the best 

performing frequencies suggesting that frequencies optimized 
to the individual subject are more important than optimizing 
frequencies to the monitor refresh rate. 

System C had the highest mean ITR of 187.5 bits/min 
across the two subjects compared to Systems A, B and D (164, 
185.5 and 114.5 bits/min, respectively). While subject 1 
achieved the best performance with system A, subject 2 
achieved the best performance using system C. This could 
indicate the importance of tailoring the BCI system to the 
individual subject, however, due to only two subjects being 
enrolled in this study, any kind of generalization on these 
results would be inadequate. Future studies should enroll many 
more subjects, to more appropriately address whether there is 
to be made a general tendency, as to whether more unique 
frequencies, or less with various phase lags, are preferable. 
This will require more sophisticated numerical methods of 
determining the optimal targets and phase intervals, as the 
methods used in this study requires fairly heavy CPU-power 
due to their numerical simplicity. Chen et al. used a similar 
phase determination scheme, but this was generalized for all 
subjects rather than tailored to each individual one [10]. 
Wittevrongel and Hulle noted that temporal patterns are very 
subject-dependent, why a more subject-tailored system is 
assumed beneficial [11]. Future studies should therefore 
consider developing and testing system optimization methods 
able to tailor a BCI system to the individual users online.   

In this study, all stimuli were presented sequentially, as it 
was beneficial to provide equal conditions to all stimuli. This 
will of course not be the case for the final interface as multiple 
stimuli must be available for the user at the same time. In the 
final 16-target BCI, neighboring targets may interfere with the 
target in focus, which could cause a lower accuracy. It will 
therefore be important to organize targets, in an effort to 
minimize the effect of surrounding targets, on classification 
accuracy. However, Chen et al. previously controlled 40 
targets online [10], which makes it seem very likely that the 
proposed 16 target BCI is feasible. Even so, further studies 
should be made, to investigate the configuration of the targets 
best suited for control of an ARM, as some visual feedback of 
the ARM position should be provided to the user, while still 
making it feasible for subjects to focus on an SSVEP target. 

A study regarding the systems online performance should 
also be conducted, as it is yet to be confirmed how many 
commands truly can be given per minute, in the online system 
when operating the 7 DOF ARM. It seems unlikely that the 
proposed 16 targets can be used to accurately control the 7 
DOF ARM, with only one second to discriminate actions for 
novel tasks or extended periods of time, why this needs further 
validation. Both subjects complained regarding visual fatigue 
during the experiment. Higher frequencies (>30 Hz) have been 
shown to decrease visual fatigue [22]; therefore, the 
ergonomics must be considered in future studies. These 
frequencies typically yield lower accuracies and/or ITR; thus, 
it might be a trade-off between accuracy and comfort. This 
trade-off is likely to be subject-dependent, so such a BCI 
system should be able to be easily tailored to the individual 
end-user.  

The spatiotemporal beamformer was slightly modified for 
this study such that higher harmonic frequencies could be 
included. Using both the first and second harmonics did indeed 

Figure 6. Classification accuracy at various phase intervals. 

   

 
 

  

 

 

TABLE II. Accuracy and ITR for each of the tested systems,  
at the optimal phase interval. The best performing system is highlighted 

with bold font. 

 System 
[-] 

Phase interval 
[rad]   

Est. Accuracy 
[%] 

Est. ITR  
[bits/min] 

Subject 1 A 0.63 100.0 240 

B 1.35 99.7 238 

C 4.65 99.4 235 

D 4.72 65.3 103 

Subject 2 A 3.84 60.0 88.0 

B 3.46 75.0 133 

C 4.68 77.2 140 

D 3.90 72.8 126 

 



  

increase performance in this study. It is therefore 
recommended to include higher harmonics in future 
spatiotemporal beamformer studies. 

V. CONCLUSION 

This very exploratory study aimed to set up a framework 
to determine the best combinations of unique frequencies and 
phases for an ARM control purposed SSVEP-BCI. All systems 
considered in this case study achieved good performance. The 
study indicates that the best design for a 16-target BCI is using 
four unique frequencies complimented by 16 unique phase 
lags. The accuracies estimated with the system using refresh 
rate resonating frequencies was generally lower compared to 
systems using non-resonating frequencies. An advantage to 
using refresh rate resonating frequencies was therefore not 
observed. Future studies should focus on an intelligent 
solution for tailoring the BCI system to the individual users 
and provide a statistical analysis on the performance 
improvements achieved from such a solution.   
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