247 research outputs found

    Probabilistic models to describe the dynamics of migrating microbial communities

    Get PDF
    In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported

    USE OF MIND/BODY SELFHEALING PRACTICE PREDICTS POSITIVE HEALTH TRANSITION IN CHRONIC FATIGUE SYNDROME: A Controlled Study

    Get PDF
    Seventy subjects diagnosed with chronic fatigue syndrome were randomized to a control group (N=33) or a treatment group (N :; 37). All continued usual medical care. Treatment subjects were assigned to a 9 week, 2-hours-per-week group program teaching mindfulness meditation and medical qigong practices. The outcome variable was 12-month health transition at oneyear follow-up, as defined by the SF36 12-month Health Transition score. The data yielded a classification tree with a 90% overall accuracy rate in classifYing subjects as "improvers" or non-improvers" (effect strength 80.5, experimentwise p < .05), based on SF36 Role FunctioningPhysical score at follow-up and frequency of mind/body self-healing practice. Subjects in the highest quartile of Role Functioning-Physical improved regardless of practice. For the remaining 75%, those practicing three or more days per week at follow-up were 2.7 times more likely to report positive 12-month Health Transition than those practicing less

    She\u27s Still My Baby

    Get PDF
    Woman with hand on hip pulling bottom of dress; Silhouettes of men talking in red circle; Photograph of Ralph F. Siberyhttps://scholarsjunction.msstate.edu/cht-sheet-music/12243/thumbnail.jp

    They Cut Down The Old Pine Tree

    Get PDF
    Illustration of a tree stump next to a pine tree on the edge of a lake at night; Photograph of a man in a suithttps://scholarsjunction.msstate.edu/cht-sheet-music/10600/thumbnail.jp

    Towards an\u2028 EU research and innovation policy agenda for nature-based solutions & re-naturing cities. Final report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities.

    Get PDF
    1. Nature-based solutions harness the power and sophistication of nature to turn environmental, social and economic challenges into innovation opportunities. They can address a variety of societal challenges in sustainable ways, with the potential to contribute to green growth, 'future-proofing' society, fostering citizen well-being, providing business opportunities and positioning Europe as a leader in world markets. \u2028 2. Nature-based solutions are actions which are inspired by, supported by or copied from nature. They have tremendous potential to be energy and resource-efficient and resilient to change, but to be successful they must be adapted to local conditions. \u2028 3. Many nature-based solutions result in multiple co-benefits for health, the economy, society and the environment, and thus they can represent more efficient and cost-effective solutions than more traditional approaches. \u2028 4. An EU Research & Innovation (R&I) agenda on nature-based solutions will enable Europe to become a world leader both in R&I and in the growing market for nature-based solutions. For this, the evidence base for the effectiveness of nature-based solutions needs to be developed and then used to implement solutions. Both need to be done in conjunction with stakeholders. The potential for transferability and upscaling of solutions also requires further investigation. There is also a need to develop a systemic approach that combines technical, business, finance, governance, regulatory and social innovation. \u2028 5. Four principal goals have been identified that can be addressed by nature-based solutions: �� Enhancing sustainable urbanisation through nature-based solutions can stimulate economic growth as well as improving the environment, making cities more attractive, and enhancing human well-being. \u2028 �� Restoring degraded ecosystems using nature-based solutions can improve the resilience of ecosystems, enabling them to deliver vital ecosystem services and also to meet other societal challenges. \u2028 �� Developing climate change adaptation and mitigation using nature-based solutions can provide more resilient responses and enhance the storage of carbon. \u2028 �� Improving risk management and resilience using nature-based solutions can lead to greater benefits than conventional methods and offer synergies in reducing multiple risks. \u2028 6. Based on the four goals, seven nature-based solutions for R&I actions are recommended to be taken forward by the European Commission and Member States: �� Urban regeneration through nature-based solutions \u2028 �� Nature-based solutions for improving well-being in urban areas \u2028 �� Establishing nature-based solutions for coastal resilience \u2028 �� Multi-functional nature-based watershed management and ecosystem restoration \u2028 �� Nature-based solutions for increasing the sustainability of the use of matter and energy \u2028 �� Nature-based solutions for enhancing the insurance value of ecosystems \u2028 �� Increasing carbon sequestration through nature-based solutions \u2028This report was produced by the Horizon 2020 Expert Group on 'Nature-Based Solutions and Re- Naturing Cities', informed by the findings of an e-consultation and a stakeholder workshop. \u202

    Rock me to Sleep in my Rocky Mountain Home

    Get PDF
    Photograph of Tex Fletcher; Illustration of mountain rangehttps://scholarsjunction.msstate.edu/cht-sheet-music/12528/thumbnail.jp

    Making the great transformation, November 13, 14, and 15, 2003

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This Conference took place during November 13, 14, and 15, 2003. Co-organized by Cutler Cleveland and Adil Najam.The conference discussants and participants analyze why transitions happen, and why they matter. Transitions are those wide-ranging changes in human organization and well being that can be convincingly attributed to a concerted set of choices that make the world that was significantly and recognizably different from the world that becomes. Transition scholars argue that that history does not just stumble along a pre-determined path, but that human ingenuity and entrepreneurship have the ability to fundamentally alter its direction. However, our ability to ‘will’ such transitions remains in doubt. These doubts cannot be removed until we have a better understanding of how transitions work

    Tools for the identification of bioactives impacting the metabolic syndrome: Screening of a botanical extract library using subcutaneous and visceral human adipose-derived stem cell-based assays

    Get PDF
    Plant extracts continue to represent an untapped source of renewable therapeutic compounds for the treatment and prevention of illnesses including chronic metabolic disorders. With the increase in worldwide obesity and its related morbidities, the need for identifying safe and effective treatments is also rising. As such, use of primary human adipose-derived stem cells represents a physiologically relevant cell system to screen for bioactive agents in the prevention and treatment of obesity and its related complications. By using these cells in a primary screen, the risk and cost of identifying artifacts due to interspecies variation and immortalized cell lines is eliminated. We demonstrate that these cells can be formatted into 384-well high throughput screens to rapidly identify botanical extracts that affect lipogenesis and lipolysis. Additionally, counterscreening with human primary stem cells from distinct adipose depots can be routinely performed to identify tissue specific responses. In our study, over 500 botanical extracts were screened and 16 (2.7%) were found to affect lipogenesis and 4 (0.7%) affected lipolysis. © 2012 Elsevier Inc
    • …
    corecore