33 research outputs found

    A porohyperelastic lubrication model for articular cartilage in the natural synovial joint

    Get PDF
    This work focuses on the proposed mechanisms for the lubrication of synovial joints and applies them to an idealised bearing geometry considering a porohyperelastic material (cartilage) rotating against a stationary rigid impermeable surface. The model captures the behaviour of all lubrication regimes including fluid film formation and boundary contact as the load capacity is increased, representing a major advancement in modelling cartilage mechanics. Transient responses in the fluid phase are shown to be faster than those in the solid phase with the former decaying over time as fluid is exuded from the material. The complex behaviour of fluid migrating to and from the lubricating film is captured which leads to a better understanding of the hydration and friction mechanisms observed

    Finite element investigations of the fluid-solid behaviour in a bio-inspired poroelastic bearing

    Get PDF
    Poroelastic materials are commonly found in biological systems, such as articulating cartilage, and the ability to predict their biphasic behaviour is a key step in the understanding of joint health and the development of biomimetic devices. Here, a fully coupled three dimensional finite element study is presented to demonstrate the permeability dependent load carrying capacity of fluid pressure in a time-varying poroelastic system. A bio-inspired material model is demonstrated with relaxation simulations which first show results for a cartilage-like sample and then for a variation of permeability from 10−19m2 to 10−13m2. The relaxation rate is non-linear but the total relaxation time scales linearly with permeability. That material model is then demonstrated in the context of a mechanical bearing operating in lubricated contact with an impermeable wall. The results show that for a given set of operating conditions the permeability modifies how the fluid and solid phases accommodate applied loads. High fluid load support varies through the thickness and width of the bearing. It is particularly high around regions where the interstitial flow is restricted by external factors such as contact interfaces. The model offers a novel method to predict local pressures and stresses within a poroelastic material

    A predictive model for discrete cell gravure roll coating

    Get PDF
    A heterogeneous multiscale model for discrete cell gravure roll coating is presented along with experimental results for the purpose of model validation. The cell volume, generalized cell shape, and the gravure patterning are considered in the model which is based on a multiscale description of the flow in the coating bead. The inclusion of a web-to-roll contact term accounts for the special gravure case when the web-roll separation tends to zero. The results show how the coating bead responds to changes in operating conditions. These are presented as profile plots of the fluid properties and coating bead shape

    Fabrication of cartilage-inspired hydrogel/entangled polymer–elastomer structures possessing poro-elastic properties

    Get PDF
    The ability to replicate the load-bearing properties of articular cartilage is attractive for many engineering applications, particularly bearings where low friction, low wear, and high durability are required. Hydrogels are widely used materials spanning many diverse applications owing to their lubricity and unique mechanical/chemical properties. The poor mechanical characteristics of conventional hydrogels, especially their compressive behavior, limit their application in load-bearing applications despite their favorable properties such as poro/viscoelasticity and lubricity. This paper demonstrates a cartilage-inspired approach to produce a structure that benefits from water-swelling resistant and ultrafast recovery behavior of elastomers as well as the stress-relaxation and energy dissipation properties of hydrogels. A method is presented in this work to fabricate interconnected macro-porous elastomers based on sintering poly(methyl methacrylate) beads. The porous elastomer imparted structural support and resilience to its composite with an infused-grafted hydrogel. At 30% strain and depending upon the strain rate, the composite exhibited a load-bearing behavior that was 14–19 times greater than that of pristine hydrogel and approximately 3 times greater than that of the porous elastomer. The equilibrium elastic modulus of the composite was 452 kPa at a strain range of 10%–30%, which was close to the values reported for the modulus of cartilage tested with similar experimental parameters defined in this study. The dissipated energy for the composite at strain rates of 1 and 10–3 s–1 was enhanced by 25-, 25-, 5-, and 15-fold as compared to that for the pristine hydrogel and the porous elastomer, respectively. The cyclic loading tests at two strain rates showed that the composite immediately recovers its load-bearing properties with the maximum load recovery staying above 95% of its initial values throughout the testing. The permeability of the structures was measured experimentally, and the results showed a decrease of permeability by 3 orders of magnitude following hydrogel grafting

    Robust and High-Performance Soft Inductive Tactile Sensors based on the Eddy-Current Effect

    Get PDF
    Tactile sensors are essential for robotic systems to interact safely and effectively with the external world, they also play a vital role in some smart healthcare systems. Despite advances in areas including materials/composites, electronics and fabrication techniques, it remains challenging to develop low cost, high performance, durable, robust, soft tactile sensors for real-world applications. This paper presents the first Soft Inductive Tactile Sensor (SITS) which exploits an inductance-transducer mechanism based on the eddy-current effect. SITSs measure the inductance variation caused by changes in AC magnetic field coupling between coils and conductive films. Design methodologies for SITSs are discussed by drawing on the underlying physics and computational models, which are used to develop a range of SITS prototypes. An exemplar prototype achieves a state-of-the-art resolution of 0.82 mN with a measurement range over 15 N. Further tests demonstrate that SITSs have low hysteresis, good repeatability, wide bandwidth, and an ability to operate in harsh environments. Moreover, they can be readily fabricated in a durable form and their design is inherently extensible as highlighted by a 4x4 SITS array prototype. These outcomes show the potential of SITS systems to further advance tactile sensing solutions for integration into demanding real-world applications

    A multiscale method for optimising surface topography in elastohydrodynamic lubrication (EHL) using metamodels

    Get PDF
    The frictional performance of a bearing is of significant interest in any mechanical system where there are lubricated surfaces under load and in relative motion. Surface topography plays a major role in determining the coefficient of friction for the bearing because the size of the fluid film and topography are of a comparable order. The problem of optimising topography for such a system is complicated by the separation in scales between the size of the lubricated domain and that of the topography, which is of at least one order of magnitude or more smaller. This paper introduces a multiscale method for optimising the small scale topography for improved frictional performance of the large scale bearing. The approach fully couples the elastohydrodynamic lubrication at both scales between pressure generated in the lubricant and deformation of the bounding surfaces. Homogenised small scale data is used to inform the large scale model and is represented using Moving Least Squares metamodels calibrated by cross validation. An optimal topography for a minimum coefficient of friction for the bearing is identified and comparisons made of local minima in the response, where very different topographies with similar frictional performance are observed. Comparisons of the optimal topography with the smooth surface model demonstrated the complexity of capturing the non-linear effect of topography and the necessity of the multiscale method in capturing this. Deviations from the smooth surface model were quantified by the metamodel coefficients and showed how topographies with a similar frictional performance have very different characteristics

    Compliant-poroelastic lubrication in cartilage-on-cartilage line contacts

    No full text
    The mechanisms of friction in natural joints are still relatively unknown and attempts at modelling cartilage-cartilage interfaces are rare despite the huge promise they offer in understanding bio-friction. This article derives a model combining finite strain, porous and thin-film flow theories to describe the lubrication of cartilage-on-cartilage line contacts. The material is modelled as compliant and poroelastic in which the micro-scale fibrous structure is interstitially filled with synovial fluid. This fluid flows over the interface between the bodies and is coupled to pressure generated by relative motion in the thin-film region formed under load. A Stribeck analysis demonstrated that this type of contact is determinable to conventional elastic lubrication but that the friction performance is improved by this interfacial flow. Moreover, the inclusion of periodic flow conditions when contact is onset is a specific novelty which elucidates new observations in the lubrication mechanisms pertaining to natural joints

    Finite element investigations of the fluid-solid behaviour in a bio-inspired poroelastic bearing

    No full text
    Poroelastic materials are commonly found in biological systems, such as articulating cartilage, and the ability to predict their biphasic behaviour is a key step in the understanding of joint health and the development of biomimetic devices. Here, a fully coupled three dimensional finite element study is presented to demonstrate the permeability dependent load carrying capacity of fluid pressure in a time-varying poroelastic system. A bio-inspired material model is demonstrated with relaxation simulations which first show results for a cartilage-like sample and then for a variation of permeability from 10−19m2 to 10−13m2. The relaxation rate is non-linear but the total relaxation time scales linearly with permeability. That material model is then demonstrated in the context of a mechanical bearing operating in lubricated contact with an impermeable wall. The results show that for a given set of operating conditions the permeability modifies how the fluid and solid phases accommodate applied loads. High fluid load support varies through the thickness and width of the bearing. It is particularly high around regions where the interstitial flow is restricted by external factors such as contact interfaces. The model offers a novel method to predict local pressures and stresses within a poroelastic material
    corecore