102 research outputs found

    Ethylene-Mediated Acclimations to Flooding Stress

    Get PDF
    Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations

    Variation in Arabidopsis flooding responses identifies numerous putative "tolerance genes"

    Get PDF
    Plant survival in flooded environments requires a combinatory response to multiple stress conditions such as limited light availability, reduced gas exchange and nutrient uptake. The ability to fine-tune the molecular response at the transcriptional and/or post-transcriptional level that can eventually lead to metabolic and anatomical adjustments are the underlying requirements to confer tolerance. Previously, we compared the transcriptomic adjustment of submergence tolerant, intolerant accessions and identified a core conserved and genotype-specific response to flooding stress, identifying numerous 'putative' tolerance genes. Here, we performed genome wide association analyses on 81 natural Arabidopsis accessions that identified 30 additional SNP markers associated with flooding tolerance. We argue that, given the many genes associated with flooding tolerance in Arabidopsis, improving resistance to submergence requires numerous genetic changes

    О Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тСндСнциях, ΠΎΡΠ»ΠΎΠΆΠ½ΠΈΠ²ΡˆΠΈΡ… Π² Π½Π°Ρ‡Π°Π»Π΅ Π₯Π₯I Π²Π΅ΠΊΠ° пСрспСктивы ΠΊΡƒΡ€ΠΎΡ€Ρ‚Π½ΠΎ-Ρ€Π΅ΠΊΡ€Π΅Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ развития ΠšΡ€Ρ‹ΠΌΠ°

    Get PDF
    ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ явился Π°Π½Π°Π»ΠΈΠ· взаимовлияния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΡΡƒΠΆΠ°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» туристско-Ρ€Π΅ΠΊΡ€Π΅Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠšΡ€Ρ‹ΠΌΠ°, для уточнСния возмоТностСй ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ прогнозирования Π΅Π³ΠΎ пСрспСктивного развития

    Ethylene-mediated phosphorylation of ORESARA1 induces sequential leaf death during flooding in Arabidopsis

    Get PDF
    The volatile phytohormone ethylene is a major regulator of plant adaptive responses to flooding. In flooded plant tissues, it quickly increases to high concentrations due to its low solubility and diffusion rates in water. The passive, quick and consistent accumulation of ethylene in submerged plant tissues makes it a reliable cue for plants to trigger flood-acclimative responses. However, persistent ethylene accumulation can also have negative effects, notably accelerated leaf senescence. Ethylene is a well-established positive regulator of senescence which is a natural element of plant ageing. However stress-induced senescence hampers the photosynthetic capacity and stress recovery of plants. In submerged Arabidopsis shoots, senescence follows a strict age-dependent pattern starting with the older leaves. Although mechanisms underlying ethylene-mediated senescence have been uncovered, it is unclear how submerged plants avoid an indiscriminate breakdown of leaves despite high systemic accumulation of ethylene. Here we demonstrate in Arabidopsis plants that even though submergence triggers a leaf-age independent activation of ethylene signaling via EIN3, senescence was initiated only in the old leaves. This EIN3 stabilization also led to the overall transcript and protein accumulation of the senescence-promoting transcription factor ORESARA1 (ORE1). ORE1 protein accumulated in both old and young leaves during submergence. However, leaf age-dependent senescence could be explained by ORE1 activation via phosphorylation only in old leaves. Our results unravel a mechanism by which plants regulate the speed and pattern of senescence during environmental stresses like flooding. Such an age-dependent phosphorylation of ORE1 ensures that older expendable leaves are dismantled first, thus prolonging the life of younger leaves and meristematic tissues vital to whole plant survival

    Multi-stress resilience in plants recovering from submergence

    Get PDF
    Submergence limits plants' access to oxygen and light, causing massive changes in metabolism; after submergence, plants experience additional stresses, including reoxygenation, dehydration, photoinhibition and accelerated senescence. Plant responses to waterlogging and partial or complete submergence have been well studied, but our understanding of plant responses during post-submergence recovery remains limited. During post-submergence recovery, whether a plant can repair the damage caused by submergence and reoxygenation and re-activate key processes to continue to grow, determines whether the plant survives. Here, we summarize the challenges plants face when recovering from submergence, primarily focusing on studies of Arabidopsis thaliana and rice (Oryza sativa). We also highlight recent progress in elucidating the interplay among various regulatory pathways, compare post-hypoxia reoxygenation between plants and animals and provide new perspectives for future studies

    Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress

    Get PDF
    Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops

    Towards increased shading potential: a combined phenotypic and genetic analysis of rice shoot architecture

    Get PDF
    Rice feeds more than half of the world’s human population. In modern rice farming, a major constraint for productivity is weed proliferation and the ecological impact of herbicide application. Increased weed competitiveness of commercial rice varieties requires enhanced shade casting to limit growth of shade-sensitive weeds and the need for herbicide. We aimed to identify traits that enhance rice shading capacity based on the canopy architecture and the underlying genetic components. We performed a phenotypic screen of a rice diversity panel comprised of 344 varieties, examining 13 canopy architecture traits linked with shading capacity in 4-week-old plants. The analysis revealed a vast range of phenotypic variation across the diversity panel. We used trait correlation and clustering to identify core traits that define shading capacity to be shoot area, number of leaves, culm and solidity (the compactness of the shoot). To simplify the complex canopy architecture, these traits were combined into a Shading Rank metric that is indicative of a plant’s ability to cast shade. Genome wide association study (GWAS) revealed genetic loci underlying canopy architecture traits, out of which five loci were substantially contributing to shading potential. Subsequent haplotype analysis further explored allelic variation and identified seven haplotypes associated with increased shading. Identification of traits contributing to shading capacity and underlying allelic variation presented in this study will serve future genomic assisted breeding programmes. The investigated diversity panel, including widely grown varieties, shows that there is big potential and genetic resources for improvement of elite breeding lines. Implementing increased shading in rice breeding will make its farming less dependent on herbicides and contribute towards more environmentally sustainable agriculture. One sentence summary Through screening a rice diversity panel for variation in shoot architecture, we identified traits corresponding to plant shading potential and their genetic constituents

    Arabidopsis latent virus 1, a comovirus widely spread in Arabidopsis thaliana collections

    Get PDF
    Transcriptome studies of Illumina RNA-Seq datasets of different Arabidopsis thaliana natural accessions and T-DNA mutants revealed the presence of two virus-like RNA sequences which showed the typical two-segmented genome characteristics of a comovirus. This comovirus did not induce any visible symptoms in infected A. thaliana plants cultivated under standard laboratory conditions. Hence it was named Arabidopsis latent virus 1 (ArLV1). Virus infectivity in A. thaliana plants was confirmed by quantitative reverse transcription polymerase chain reaction, transmission electron microscopy and mechanical inoculation. Arabidopsis latent virus 1 can also mechanically infect Nicotiana benthamiana, causing distinct mosaic symptoms. A bioinformatics investigation of A. thaliana RNA-Seq repositories, including nearly 6500 Sequence Read Archives (SRAs) in the NCBI SRA database, revealed the presence of ArLV1 in 25% of all archived natural A. thaliana accessions and in 8.5% of all analyzed SRAs. Arabidopsis latent virus 1 could also be detected in A. thaliana plants collected from the wild. Arabidopsis latent virus 1 is highly seed-transmissible with up to 40% incidence on the progeny derived from infected A. thaliana plants. This has probably led to a worldwide distribution in the model plant A. thaliana with as yet unknown effects on plant performance in a substantial number of studies
    • …
    corecore