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ABSTRACT

Plant survival in flooded environments requires a combinatory response to multiple stress conditions such as
limited light availability, reduced gas exchange and nutrient uptake. The ability to fine-tune the molecular
response at the transcriptional and/or post-transcriptional level that can eventually lead to metabolic and
anatomical adjustments are the underlying requirements to confer tolerance. Previously, we compared the
transcriptomic adjustment of submergence tolerant, intolerant accessions and identified a core conserved and
genotype-specific response to flooding stress, identifying numerous ‘putative’ tolerance genes. Here, we
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performed genome wide association analyses on 81 natural Arabidopsis accessions that identified 30 additional
SNP markers associated with flooding tolerance. We argue that, given the many genes associated with flooding
tolerance in Arabidopsis, improving resistance to submergence requires numerous genetic changes.

Flooding is a natural phenomenon that shapes plant ecosystems
and also negatively affects crop yields in agricultural areas.'”
The frequency and intensity of floods are expected to increase
with the current climate change and floods are cataloged as one
of the most expensive natural disasters to cause widespread
crop-damage.” The dramatic negative impact of submergence
on plants, mainly caused by reduced gas exchange underwater,
provides us with a major challenge to understand and improve
crop tolerance to flooding. Interestingly, many species occur
naturally on floodplains and have evolved a suite of traits to
thrive and survive during periods of flooding.* These survival
strategies can be roughly divided into 2 classes, firstly cessation
of growth to retain valuable resources needed for regrowth
when the flood recedes, and secondly the creation of improved
aeration through the development of adventitious roots and
active shoot growth toward the water surface to snorkel for air
and light.” The molecular mechanisms of these traits in wild
species are gradually being elucidated.®® However, these thrive-
and-survive traits are naturally not, or only to a limited extent,
present in crops, and incorporation of these traits will be chal-
lenging. An exception is SUB1A rice, where a naturally occur-
ring allele confers a growth cessation strategy and subsequent
tolerance when completely submerged.” Despite a lack of spe-
cialist traits in other species and crops, large intra-species varia-
tion in flooding-tolerance does exist, which could potentially
point to key players that modulate tolerance and serve as a basis
for crop improvement.

Such within species variation was explored by Vashisht et al.
(2011) to uncover a relatively large variation in flooding

tolerance among 86 Arabidopsis accessions.'' A completely
submerged plant is challenged with a compound environmental
stress consisting of reduced light availability and limited gas
exchange. Therefore, the authors estimated tolerance to both
the compound stress (submergence and darkness) and to dark-
ness without submergence. Hence not only the ability to with-
stand compound flooding stress was assessed, but it could also
be compared to the ability to tolerate darkness to estimate rela-
tive submergence tolerance (hazard ratio). This effectively
allowed separation of different stress factors associated with the
underwater environment, such as internal ethylene accumula-
tion and a reduction in oxygen availability, from starvation
effects caused by a prolonged period in darkness. Interestingly,
neither tolerance to complete submergence nor the relative sub-
mergence tolerance could be associated with traits considered
crucial for survival, such as tissue diameter, length, respiration
rate, internal oxygen levels, tissue porosity and initial carbohy-
drate availability.

In order to understand the processes that govern the observed
phenotypic variation in submergence tolerance, the transcrip-
tional shift upon darkness and submergence of tolerant and sensi-
tive accessions were investigated for both the root and shoot.'
The study identified a strong overlap in the responses between
accessions, and a prominent effect of darkness with relatively
minor additional response by submergence. Important transcrip-
tomic changes, including alternative splicing, pointed to a major
role of autophagy for all accessions, with stronger activation in
tolerant genotypes. Additionally, regardless of genotype, several
fundamental differences were observed between shoots and roots,
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Figure 1. Genetic and transcriptomic associations with flooding tolerance. (A) Manhattan plots of GWA results showing association between SNP markers and tolerance to
compound submergence stress (LTso) and relative submergence tolerance (hazard ratio). Alternating shades of blue represents the 5 individual chromosomes of Arabi-
dopsis. SNP markers above the dashed line (—logqo(Pya) > 4) were explored to identify tolerance associated genes. (B and C) List of genes within +/— 10 kb region of
associated SNP markers for compound submergence tolerance (B) and relative tolerance (C). Genes with tolerance specific SNPs among the top 5 tolerant and 5 sensitive
accessions'" are marked red. For these genes a specific variant in the promoter/exon (e.g. SNP) was at least present in 4 tolerant accessions and at most in 1 sensitive
accession, and vice versa. The differences in the transcriptomic response (log,(FC)) to submergence between 3 tolerant and 3 sensitive accessions'® are shown in the heat-
map. (D) Expression values (log,FC) of GWA and transcriptome® derived putative tolerance (trans.tol) genes. Red and blue circles represent GWA genes for compound
submergence (LTs,) tolerance and relative submergence tolerance (Hazard ratio). Closed circles are GWA derived genes with tolerance specific SNP variation (see B and
Q). Gray circles depict the transcriptome derived putative tolerance genes (trans.tol) for their corresponding comparison. The boxes show the second and third quartile
and the whiskers identify the 2 to 98 % range of all genes transcriptomically investigated by van Veen et al."® SD/AL: compound, submergence in dark (SD) compared to
air light (AL) conditions; SD/AD: compound submergence compared to air dark (AD) conditions; R, root; S, shoot.



with reprogramming of growth regulatory components in the
shoot while chloroplast localized and photosynthesis related
genes were common among root-specific genes. With regard to
explaining the phenotypic variation, van Veen et al. (2016)"°
identified 126 putative ‘tolerance’ genes that were induced differ-
ently in tolerant and sensitive accessions. Interestingly, there was
hardly any overlap between the organs. These ‘tolerance’ genes
were characterized not so much by contrasting regulation, but
rather by quantitative differences. This led to the hypothesis that
tolerance is due to a relatively large number of small changes.
Transcriptomic differences during the initial stress acclimation
response are of course of great importance, but can never provide
a full picture of the genetic basis of tolerance variation. To provide
more information on potential tolerance genes, we revisited
the carefully collected dataset by Vashisht et al. (2011) of submer-
gence tolerance variation within Arabidopsis. In order to correlate
genetic variants to flooding tolerance, we performed genome wide
association (GWA) on the survival score (LT5,: the number of
days after which 50% of the population is dead) of 81 genotyped
accessions under compound submergences and relative submer-
gence tolerance, the latter accounted for sensitivity to darkness w.
r.t submergence and darkness together (Hazard ratio)."!

The genome wide associations between the LT, and hazard
ratio with 250K SNP markers of 81 accessions were computed
using a linear mixed model (EMMA) on the publically available
GWA portal (https://gwas.gmi.oeaw.ac.at). In order to identify
phenotype associated genes, we examined SNPs with a minor
allele frequency count of more than 10 and peaks with a Bon-
ferroni corrected —log;o(Pvalue) of more than four. Our analy-
sis identified 14 and 16 SNP markers that are associated with
LT5 and hazard ratio respectively (Fig. 1A). Genes within link-
age disequilibrium (+/— 10 kb) of the associated SNP markers
were identified, enlisting a total of 77 and 68 genes associated
with submergence and relative submergence tolerance respec-
tively (Fig. 1B and 1C). No overlap was identified between the
GWA and transcriptome derived tolerance genes [10], never-
theless, for some genes there were relatively large estimated
differences in the transcriptomic submergence response
between tolerant and sensitive accessions (Fig. 1B-D). To high-
light the most likely ‘tolerance’ genes, we compared the SNP
variation in the promoter and exonic regions of the top 5 geno-
typed tolerant (C24, Lp2-6, Kin-0, Ws-2 and NFA-8) and 5
sensitive (Mt-0, Pu2-7, Ler-1, Bay-0 and Cvi-0) accessions.'!
This identified 5 and 18 genes, for compound submergence
and relative tolerance respectively, that have SNP variants spe-
cific to at least 4 tolerant accessions and allowing one SNP in
the sensitive accessions, or vice versa.

In summary, both GWA and transcriptome studies
points to a relatively large number of genes correlating with
flooding tolerance. These findings support the hypothesis
that tolerance to flooding, at least in Arabidopsis, requires
several genetic changes. We suggest that partly for this rea-
son in planta manipulation of single genes has yielded little
or unpredictable results. Manipulation of the oxygen sens-
ing mechanism has been reported to strongly increase, but
in many cases also to decrease flooding tolerance, without
clear explanations for these contrasting results.” Further-
more, manipulation of several major transcription factors
that are normally activated upon submergence, has done
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relatively little to improve or decrease tolerance.'”” Among
the large number of identified tolerance genes many physio-
logical processes are represented (Fig. 1B)."° This is not sur-
prising as flooding tolerance requires the ability to deal with
severe carbon starvation, generate energy through fermenta-
tion driven glycolysis, tolerate build-up of toxic elements in
the rhizosphere and deal with the susceptibility to pathogen
attacks. Once the flood recedes the plant is prone to desic-
cation, a surge of oxygen and high light, which leads to a
high reactive oxygen species load. Which aspects are most
important in Arabidopsis is yet unknown. Nevertheless, to
survive and thrive in flood prone areas, mastery of all these
aspects is required. The success of SUBIA rice raised the
possibility of finding single gene solutions to flood sensitiv-
ity also in other species. To the contrary, improving our
understanding of what constitutes flooding tolerance will
likely require the further dissection of all these crucial indi-
vidual aspects, with the final aim of stacking all these traits
into a single plant to improve flood tolerance.
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